A130631 Multiplicative persistence of Fibonacci numbers.
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 2, 2, 4, 1, 2, 3, 2, 2, 2, 1, 4, 2, 3, 1, 3, 3, 4, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 0
Examples
3524578 -> 3*5*2*4*5*7*8 = 33600 -> 3*3*6*0*0 = 0 -> persistence = 2.
Links
- Index entries for linear recurrences with constant coefficients, signature (1).
Programs
-
Maple
P:=proc(n)local f0,f1,f2,i,k,w,ok,cont; f0:=0; f1:=1; print(0); print(0); for i from 0 by 1 to n do f2:=f1+f0; f0:=f1; f1:=f2; w:=1; ok:=1; k:=f2; if k<10 then print(0); else cont:=1; while ok=1 do while k>0 do w:=w*(k-(trunc(k/10)*10)); k:=trunc(k/10); od; if w<10 then ok:=0; print(cont); else cont:=cont+1; k:=w; w:=1; fi; od; fi; od; end: P(100);
-
Mathematica
Table[Length[NestWhileList[Times@@IntegerDigits[#]&, Fibonacci[n], #>=10&]], {n, 0, 102}]-1 (* James C. McMahon, Feb 11 2025 *)
Comments