cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130631 Multiplicative persistence of Fibonacci numbers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 2, 2, 4, 1, 2, 3, 2, 2, 2, 1, 4, 2, 3, 1, 3, 3, 4, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Keywords

Comments

From the 184th terms on all the Fibonacci numbers have some digits equal to zero (see A076564), thus their persistence is equal to 1.

Examples

			3524578 -> 3*5*2*4*5*7*8 = 33600 -> 3*3*6*0*0 = 0 -> persistence = 2.
		

Crossrefs

Programs

  • Maple
    P:=proc(n)local f0,f1,f2,i,k,w,ok,cont; f0:=0; f1:=1; print(0); print(0); for i from 0 by 1 to n do f2:=f1+f0; f0:=f1; f1:=f2; w:=1; ok:=1; k:=f2; if k<10 then print(0); else cont:=1; while ok=1 do while k>0 do w:=w*(k-(trunc(k/10)*10)); k:=trunc(k/10); od; if w<10 then ok:=0; print(cont); else cont:=cont+1; k:=w; w:=1; fi; od; fi; od; end: P(100);
  • Mathematica
    Table[Length[NestWhileList[Times@@IntegerDigits[#]&, Fibonacci[n], #>=10&]], {n, 0, 102}]-1 (* James C. McMahon, Feb 11 2025 *)

Formula

a(n) = A031346(A000045(n)). - Michel Marcus, Feb 11 2025