A130644 Number of degree-2n permutations without odd cycles and such that number of cycles of size 2k is odd (or zero) for every k.
1, 1, 6, 225, 8400, 760725, 91725480, 15563633085, 3381661483200, 1015992072520425, 360153767651277600, 160068908768727783825, 84298688029883001074400, 53051020433282263735468125, 38316864396320965168213500000, 32660810942813910822645908353125
Offset: 0
Examples
a(2)=6 because we have (1234),(1243),(1324),(1342),(1423) and (1432).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..220
Crossrefs
Cf. A060307.
Programs
-
Maple
g:=product(1+sinh(x^(2*k)/(2*k)),k=1..50): gser:=series(g,x=0,44): seq(factorial(2*n)*coeff(gser,x,2*n),n=0..14); # Emeric Deutsch, Aug 24 2007 # second Maple program: with(combinat): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add( `if`(j=0 or irem(i, 2)=0 and irem(j, 2)=1, multinomial(n, n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i))) end: a:= n-> b(2*n$2): seq(a(n), n=0..20); # Alois P. Heinz, Mar 09 2015
-
Mathematica
multinomial[n_, k_] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 0 && Mod[j, 2] == 1, multinomial[n, Join[{n-i*j}, Array[i&, j]]]*(i-1)!^j/j!*b[n-i*j, i-1], 0], {j, 0, n/i}]]]; a[n_] := b[2n, 2n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 08 2017, after Alois P. Heinz *)
Formula
E.g.f.: Product_{k>0} (1+sinh(x^(2*k)/(2*k))).
Extensions
More terms from Emeric Deutsch, Aug 24 2007