A130648 Number of degree-n permutations without even cycles and such that number of cycles of size 2k-1 is odd (or zero) for every k.
1, 1, 0, 3, 8, 25, 184, 721, 9904, 66753, 691088, 5973121, 84925048, 940427137, 12801319816, 186556383105, 3174772979936, 48489077948161, 842173637012896, 15359492773456129, 316965131969908072, 6368424993521096961, 135098381153771956952, 2980219360336428021505
Offset: 0
Examples
a(3)=3 because we have (1)(2)(3), (123) and (132).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
Crossrefs
Cf. A060307.
Programs
-
Maple
g:=product(1+sinh(x^(2*k-1)/(2*k-1)),k=1..30): gser:=series(g,x=0,27): seq(factorial(n)*coeff(gser,x,n),n=0..24); # Emeric Deutsch, Aug 24 2007 # second Maple program: with(combinat): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add( `if`(j=0 or irem(i, 2)=1 and irem(j, 2)=1, multinomial(n, n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..30); # Alois P. Heinz, Mar 09 2015
-
Mathematica
multinomial[n_, k_] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 1 && Mod[j, 2] == 1, multinomial[n, Join[{n-i*j}, Array[i&, j]]]*(i-1)!^j/j!*b[n-i*j, i-1], 0], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 08 2017, after Alois P. Heinz *)
Formula
E.g.f.: Product_{k>0} (1+sinh(x^(2*k-1)/(2*k-1))).
Extensions
More terms from Emeric Deutsch, Aug 24 2007