cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130656 Interlacing n^3/2 and n^2(n + 1)/2.

Original entry on oeis.org

1, 4, 18, 32, 75, 108, 196, 256, 405, 500, 726, 864, 1183, 1372, 1800, 2048, 2601, 2916, 3610, 4000, 4851, 5324, 6348, 6912, 8125, 8788, 10206, 10976, 12615, 13500, 15376, 16384, 18513, 19652, 22050, 23328, 26011, 27436, 30420, 32000, 35301, 37044
Offset: 1

Views

Author

Olivier Gérard, Jun 21 2007

Keywords

Crossrefs

Cf. A093005 (quadratic equivalent), A065423 (linear equivalent).

Programs

  • Maple
    A130656:=n->n^2 * floor((n + 1)/2): seq(A130656(n), n=1..100); # Wesley Ivan Hurt, Jan 21 2017
  • Mathematica
    a[n_Integer] := n^2 * Floor[(n + 1)/2]
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,4,18,32,75,108,196},50] (* Harvey P. Dale, Feb 18 2015 *)

Formula

a(n) = n^2 * floor((n + 1)/2).
G.f.: x*(1+3*x+11*x^2+5*x^3+4*x^4)/((1-x)^4*(1+x)^3). - R. J. Mathar, Sep 09 2008
a(n) = a(n-1)+ 3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7), a(1)=1, a(2)=4, a(3)=18, a(4)=32, a(5)=75, a(6)=108, a(7)=196. - Harvey P. Dale, Feb 18 2015
Sum_{n>=1} 1/a(n) = zeta(3)/4 + Pi^2/4 - 2*log(2). - Amiram Eldar, Mar 15 2024