A130689 Number of partitions of n such that every part divides the largest part; a(0) = 1.
1, 1, 2, 3, 5, 6, 10, 11, 16, 19, 26, 28, 41, 43, 56, 65, 82, 88, 115, 122, 155, 174, 209, 225, 283, 305, 363, 402, 477, 514, 622, 666, 783, 858, 990, 1078, 1268, 1362, 1561, 1708, 1958, 2111, 2433, 2613, 2976, 3247, 3652, 3938, 4482, 4821, 5422
Offset: 0
Examples
For n = 6 we have 10 such partitions: [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 2, 2], [2, 2, 2], [1, 1, 1, 3], [3, 3], [1, 1, 4], [2, 4], [1, 5], [6]. From _Gus Wiseman_, Apr 18 2021: (Start) The a(1) = 1 through a(8) = 16 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (21) (22) (41) (33) (61) (44) (111) (31) (221) (42) (331) (62) (211) (311) (51) (421) (71) (1111) (2111) (222) (511) (422) (11111) (411) (2221) (611) (2211) (4111) (2222) (3111) (22111) (3311) (21111) (31111) (4211) (111111) (211111) (5111) (1111111) (22211) (41111) (221111) (311111) (2111111) (11111111) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000 (first 1001 terms from Andrew Howroyd)
Crossrefs
The dual version is A083710.
The case without 1's is A339619.
The Heinz numbers of these partitions are the complement of A343337.
The complement is counted by A343341.
The strict case is A343347.
The complement in the strict case is counted by A343377.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A072233 counts partitions by sum and greatest part.
Programs
-
Mathematica
Table[If[n==0,1,Length[Select[IntegerPartitions[n],FreeQ[#,1]&&And@@IntegerQ/@(Max@@#/#)&]]],{n,0,30}] (* Gus Wiseman, Apr 18 2021 *)
-
PARI
seq(n)={Vec(1 + sum(m=1, n, my(u=divisors(m)); x^m/prod(i=1, #u, 1 - x^u[i] + O(x^(n-m+1)))))} \\ Andrew Howroyd, Apr 17 2021
Formula
G.f.: 1 + Sum_{n>0} x^n/Product_{d divides n} (1-x^d).
Comments