A130704 Palindromic primes whose squares are the sum of three consecutive primes.
7, 11, 151, 191, 929, 10301, 14741, 15451, 76667, 98689, 1062601, 1153511, 1175711, 1215121, 1300031, 1317131, 1489841, 1597951, 3075703, 3127213, 3362633, 3441443, 7354537, 7472747, 7662667, 9127219, 9196919, 9451549, 9561659
Offset: 1
Examples
7^2 = 49 = 13 + 17 + 19. 11^2 = 121 = 37 + 41 + 43.
Links
- Robert G. Wilson v, Table of n, for n = 1..1000.
Programs
-
Mathematica
NextPalindrome[n_] := Block[{l = Floor[Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]]]] > FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[ idn, Ceiling[l/2]], Reverse[Take[idn, Floor[l/2]]]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[ idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]]]]]]]]; PrevPrim[n_] := Block[{k = n - 1}, While[ ! PrimeQ[k], k-- ]; k]; NextPrim[n_] := Block[{k = n + 1}, While[ ! PrimeQ[k], k++ ]; k]; fQ[n_] := Block[{p, q, r, s}, q = PrevPrim[ Ceiling[n^2/3]]; p = PrevPrim@q; r = NextPrim[ Floor[n^2/3]]; s = NextPrim@r; n^2 == p + q + r || n^2 == q + r + s]; pd = 6; lst = {}; Do[pd = NextPalindrome@pd; If[ PrimeQ@pd && fQ@pd, AppendTo[lst, pd]], {n, 10^8}]; lst Select[Sqrt[#]&/@(Total/@Partition[Prime[Range[10^7]],3,1]),PalindromeQ[#]&&PrimeQ[#]&] (* The program generates the first 8 terms of the sequence. To generate more, increase the Range constant, but the program may take a long time to run. *) (* Harvey P. Dale, Jul 26 2023 *)
Comments