cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130704 Palindromic primes whose squares are the sum of three consecutive primes.

Original entry on oeis.org

7, 11, 151, 191, 929, 10301, 14741, 15451, 76667, 98689, 1062601, 1153511, 1175711, 1215121, 1300031, 1317131, 1489841, 1597951, 3075703, 3127213, 3362633, 3441443, 7354537, 7472747, 7662667, 9127219, 9196919, 9451549, 9561659
Offset: 1

Views

Author

Robert G. Wilson v, Jun 19 2007

Keywords

Comments

The number of such palindromic primes less than 10^n: 1, 2, 5, 5, 10, 10, 30, 30, 141, 141, 843, 843, 5856, 5856, 42675, 42675, ....

Examples

			7^2 = 49 = 13 + 17 + 19.
11^2 = 121 = 37 + 41 + 43.
		

Programs

  • Mathematica
    NextPalindrome[n_] := Block[{l = Floor[Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]]]] > FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[ idn, Ceiling[l/2]], Reverse[Take[idn, Floor[l/2]]]]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[ idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]]]]]]]];
    PrevPrim[n_] := Block[{k = n - 1}, While[ ! PrimeQ[k], k-- ]; k]; NextPrim[n_] := Block[{k = n + 1}, While[ ! PrimeQ[k], k++ ]; k]; fQ[n_] := Block[{p, q, r, s}, q = PrevPrim[ Ceiling[n^2/3]]; p = PrevPrim@q; r = NextPrim[ Floor[n^2/3]]; s = NextPrim@r; n^2 == p + q + r || n^2 == q + r + s];
    pd = 6; lst = {}; Do[pd = NextPalindrome@pd; If[ PrimeQ@pd && fQ@pd, AppendTo[lst, pd]], {n, 10^8}]; lst
    Select[Sqrt[#]&/@(Total/@Partition[Prime[Range[10^7]],3,1]),PalindromeQ[#]&&PrimeQ[#]&] (* The program generates the first 8 terms of the sequence. To generate more, increase the Range constant, but the program may take a long time to run. *) (* Harvey P. Dale, Jul 26 2023 *)

Formula

Intersection of A002385 and A034961.