cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130707 a(n+3) = 3*(a(n+2) - a(n+1)) + 2*a(n).

Original entry on oeis.org

1, 2, 2, 2, 4, 10, 22, 44, 86, 170, 340, 682, 1366, 2732, 5462, 10922, 21844, 43690, 87382, 174764, 349526, 699050, 1398100, 2796202, 5592406, 11184812, 22369622, 44739242, 89478484, 178956970, 357913942, 715827884, 1431655766, 2863311530
Offset: 0

Views

Author

Paul Curtz, Jul 01 2007

Keywords

Comments

Binomial transform of period-3 sequence with period 1 1 -1.

Programs

  • Maple
    a:=proc(n) options operator, arrow: (1/3)*2^n+(4/3)*(-1)^n*cos((1/3)*(2*n+1)*Pi) end proc: seq(a(n), n = 0 .. 33); # Emeric Deutsch, Jul 27 2007
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==a[2]==2,a[n]==3(a[n-1]-a[n-2])+2a[n-3]},a,{n,40}] (* or *) LinearRecurrence[{3,-3,2},{1,2,2},40] (* Harvey P. Dale, Jan 18 2015 *)

Formula

a(n) = 2^n/3 + 4*(-1)^n*(1/3)*cos((2n+1)*Pi/3). - Emeric Deutsch, Jul 27 2007
From R. J. Mathar, Nov 18 2007: (Start)
G.f.: (-1+x+x^2)/(2*x-1)/(x^2-x+1).
a(n) = (2*A057079(n) + 2^n)/3. (End)

Extensions

More terms from Emeric Deutsch, Jul 27 2007