A130730 Fermat numbers of order 7 or F(n,7) = 2^(2^n)+7.
9, 11, 23, 263, 65543, 4294967303, 18446744073709551623, 340282366920938463463374607431768211463, 115792089237316195423570985008687907853269984665640564039457584007913129639943
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..11
- Tigran Hakobyan, On the unboundedness of common divisors of distinct terms of the sequence a(n)=2^2^n+d for d>1, arXiv:1601.04946 [math.NT], 2016.
Programs
-
Magma
[2^(2^n)+7: n in [0..11]]; // Vincenzo Librandi, Jan 09 2013
-
Mathematica
Table[(2^(2^n) + 7), {n, 0, 15}] (* Vincenzo Librandi, Jan 09 2013 *)
-
PARI
fplusm(n,m)= { local(x,y); for(x=0,n, y=2^(2^x)+m; print1(y",") ) }
Formula
F(n,m): The n-th Fermat number of order m = 2^(2^n)+ m. The traditional Fermat numbers are F(n,1) or Fermat numbers of order 1 in this nomenclature.
Comments