cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A063486 a(n) = 2^(2^n) + 5.

Original entry on oeis.org

7, 9, 21, 261, 65541, 4294967301, 18446744073709551621, 340282366920938463463374607431768211461, 115792089237316195423570985008687907853269984665640564039457584007913129639941
Offset: 0

Views

Author

Jason Earls, Jul 28 2001

Keywords

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston, MA, 1976, p. 238.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Example 5.1 on page 153.

Crossrefs

Programs

  • Mathematica
    2^2^Range[0, 10] + 5 (* Paolo Xausa, Apr 17 2024 *)
  • PARI
    for(n=0,8,print1(2^(2^n)+5, ", "))
    
  • PARI
    { for (n=0, 11, write("b063486.txt", n, " ", 2^(2^n) + 5) ) } \\ Harry J. Smith, Aug 23 2009
    
  • SageMath
    [2**2**n + 5 for n in (0..8)] # Stefano Spezia, Jul 20 2025

A130729 Fermat numbers of order 3 or F(n,3) = 2^(2^n)+3.

Original entry on oeis.org

5, 7, 19, 259, 65539, 4294967299, 18446744073709551619, 340282366920938463463374607431768211459, 115792089237316195423570985008687907853269984665640564039457584007913129639939
Offset: 0

Views

Author

Cino Hilliard, Jul 05 2007

Keywords

Comments

This is equivalent to F(n)+2 or 2^(2^n)+ 1 + 2. Conjecture: If n is odd, 7 is a divisor of F(n,3).
The conjecture is true: the order of 2 mod 7 is 3, and if n is odd then 2^n == 2 mod 3 so 2^(2^n) + 3 == 2^2 + 3 == 0 mod 7. - Robert Israel, Nov 20 2014

Crossrefs

Programs

  • Magma
    [2^(2^n) + 3: n in [0..11]]; // Vincenzo Librandi, Jan 09 2013
  • Mathematica
    Table[(2^(2^n) + 3), {n, 0, 15}] (* Vincenzo Librandi, Jan 09 2013 *)
  • PARI
    fplusm(n,m)= { local(x,y); for(x=0,n, y=2^(2^x)+m; print1(y",") ) }
    

Formula

F(n,m): The n-th Fermat number of order m = 2^(2^n)+ m. The traditional Fermat numbers are F(n,1) or Fermat numbers of order 1.

A274022 Primes of the form 2^(2^k) + 3.

Original entry on oeis.org

5, 7, 19, 65539
Offset: 1

Views

Author

Vincenzo Librandi, Jun 07 2016

Keywords

Comments

Terms given correspond to n = 0, 1, 2, and 4.
Next term >= 2^2^28 + 3. - Charles R Greathouse IV, Jun 08 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..10] | IsPrime(a) where a is 2^(2^n)+3];
    
  • Mathematica
    Select[Table[2^(2^n) + 3, {n, 0, 15}], PrimeQ]
  • PARI
    for(n=0,4, if(ispseudoprime(t=2^2^n+3), print1(t", "))) \\ Charles R Greathouse IV, Jun 08 2016

A160021 a(n)=2^(2^n)+33, Fermat numbers of order 33.

Original entry on oeis.org

35, 37, 49, 289, 65569, 4294967329, 18446744073709551649, 340282366920938463463374607431768211489, 115792089237316195423570985008687907853269984665640564039457584007913129639969
Offset: 1

Views

Author

Cino Hilliard, Apr 30 2009

Keywords

Comments

Fermat numbers of order m are defined by F(n,m) = 2^(2^n)+m = A001146(n)+m.
F(1,33) = 37 is the only prime in this sequence. (If n is even, 7 divides F(n,33). For n > 2, 17 divides F(n,33). Proofs are in the link.)

Crossrefs

Cf. A130730 (order 7).

Programs

  • Magma
    [2^(2^n)+33: n in [0..11]]; // Vincenzo Librandi, Jan 09 2013
  • Mathematica
    Table[(2^(2^n) + 33), {n, 0, 15}] (* Vincenzo Librandi, Jan 09 2013 *)
  • PARI
    g(n) = for(x=0,n,y=2^(2^x)+33;print1(y","))
    

Extensions

Edited by R. J. Mathar, May 08 2009

A274023 Primes of the form 2^(2^k) + 13.

Original entry on oeis.org

17, 29, 269, 18446744073709551629
Offset: 1

Views

Author

Vincenzo Librandi, Jun 07 2016

Keywords

Comments

Terms given correspond to k = 1, 2, 3 and 6.
Next term >= 2^2^39 + 13. - Charles R Greathouse IV, Jun 08 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..10] | IsPrime(a) where a is 2^(2^n)+13];
    
  • Mathematica
    Select[Table[2^(2^n) + 13, {n, 0, 15}], PrimeQ]
  • PARI
    for(n=1,6, if(ispseudoprime(t=2^2^n+13), print1(t", "))) \\ Charles R Greathouse IV, Jun 08 2016
Showing 1-5 of 5 results.