A063486
a(n) = 2^(2^n) + 5.
Original entry on oeis.org
7, 9, 21, 261, 65541, 4294967301, 18446744073709551621, 340282366920938463463374607431768211461, 115792089237316195423570985008687907853269984665640564039457584007913129639941
Offset: 0
- D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston, MA, 1976, p. 238.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Example 5.1 on page 153.
-
2^2^Range[0, 10] + 5 (* Paolo Xausa, Apr 17 2024 *)
-
for(n=0,8,print1(2^(2^n)+5, ", "))
-
{ for (n=0, 11, write("b063486.txt", n, " ", 2^(2^n) + 5) ) } \\ Harry J. Smith, Aug 23 2009
-
[2**2**n + 5 for n in (0..8)] # Stefano Spezia, Jul 20 2025
A130730
Fermat numbers of order 7 or F(n,7) = 2^(2^n)+7.
Original entry on oeis.org
9, 11, 23, 263, 65543, 4294967303, 18446744073709551623, 340282366920938463463374607431768211463, 115792089237316195423570985008687907853269984665640564039457584007913129639943
Offset: 0
-
[2^(2^n)+7: n in [0..11]]; // Vincenzo Librandi, Jan 09 2013
-
Table[(2^(2^n) + 7), {n, 0, 15}] (* Vincenzo Librandi, Jan 09 2013 *)
-
fplusm(n,m)= { local(x,y); for(x=0,n, y=2^(2^x)+m; print1(y",") ) }
A140729
Diagonal A(n,n) of array A(k,n) = Product of first n of k-gonal pyramidal numbers.
Original entry on oeis.org
40, 2100, 324000, 117771500, 86640153600, 115851776040000, 260111401804800000, 922852527136155000000, 4931966428685936640000000, 38193820496218904209973280000, 415101787718859995456102400000000
Offset: 3
a(3) = product of the first 3 triangular pyramidal (tetrahedral) numbers (A000292) = A087047(3) = 1 * 4 * 10 = 40.
a(4) = product of the first 4 square pyramidal numbers (A000330) = 1 * 5 * 14 * 30 = 2100.
a(5) = product of the first 5 pentagonal pyramidal numbers (A002411) = 1 * 6 * 18 * 40 * 75 = 324000.
a(6) = product of the first 6 hexagonal pyramidal numbers (A002412) = 1 * 7 * 22 * 50 * 95 * 161 = 117771500.
a(7) = product of the first 7 heptagonal pyramidal numbers (A002413) = 1 * 8 * 26 * 60 * 115 * 196 * 308 = 86640153600.
a(8) = product of the first 8 octagonal pyramidal numbers (A002414) = 1 * 9 * 30 * 70 * 135 * 231 * 364 * 540 = 115851776040000.
Showing 1-3 of 3 results.
Comments