cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130757 Triangular table of coefficients of Laguerre-Sonin polynomials n!*2^n*Lag(n,x/2,1/2) of order 1/2.

Original entry on oeis.org

1, 3, -1, 15, -10, 1, 105, -105, 21, -1, 945, -1260, 378, -36, 1, 10395, -17325, 6930, -990, 55, -1, 135135, -270270, 135135, -25740, 2145, -78, 1, 2027025, -4729725, 2837835, -675675, 75075, -4095, 105, -1, 34459425, -91891800, 64324260, -18378360, 2552550, -185640, 7140, -136
Offset: 0

Views

Author

Wolfdieter Lang, Jul 13 2007

Keywords

Comments

These polynomials appear in the radial l=0 (s) wave functions of the isotropic three-dimensional harmonic quantum oscillator with the dimensionless variable x=(r/L)^2 with r>=0 and L^2=h/(m*f0). h is Planck's constant and m and f0 are the mass and the frequency of the oscillator.
From Tom Copeland, Dec 13 2015: (Start)
See A099174 for relations to the Hermite polynomials and the link in A176230 for operator relations. The infinitesimal generator for this matrix contains A014105.
The row polynomials are P(n,x) = 2^n n! Lag(n,x/2,1/2), where Lag(n,x,q) is the associated Laguerre polynomial of order q, with raising operator R = -x^(-2) [x^(3/2) (1 - 2D)]^2 = 3 - x + (4x - 6) D - 4x D^2 with D = d/dx, i.e., R P(n,x) - P(n+1,x). A matrix reresentation of R acting on an o.g.f. (formal power series) is given by the transpose of the production matrix below. The diagonal corresponds to (3 + 4 xD) x^n = (3 + 4n) x^n; the upper diagonal, to -x x^n = -x^(n+1); and the lower diagonal, to (-6 - 4 xD) D x^n = -n (6 + 4(n-1)) x^(n-1), the sequence A002943. See A176230 for a similar relation.
The triangles of Bessel numbers entries A122848, A049403, A096713, A104556 contain these polynomials as even or odd rows. Also the aerated version A099174 and A066325. Reversed, these entries are A100861, A144299, A111924.
(End)
Exponential Riordan array [1/(1-2x)^(3/2), -x/(1-2x)]. - Paul Barry, Mar 07 2017

Examples

			[1]; [3,-1]; [15,-10,1]; [105,-105,21,-1]; [945,-1260,378,-36,1]; ...
		

Crossrefs

Cf. A021009 (Coefficient table of n!*L(n, 0, x)).
Row sums (signed) give A131441. Row sums (unsigned) give A066224.

Programs

  • Maple
    seq(seq(n!*2^(n-m)*(-1)^m*binomial(n+1/2,n-m)/m!,m=0..n),n=0..10); # Robert Israel, Dec 25 2015
  • Mathematica
    Table[n! (2^(n - m)) ((-1)^m) Binomial[n + 1/2, n - m]/m!, {n, 0, 8}, {m, 0, n}] // Flatten (* Michael De Vlieger, Dec 24 2015 *)

Formula

a(n,m) = n!*(2^(n-m))*L(1/2,n,m) with L(1/2,n,m) = ((-1)^m)*binomial(n+1/2,n-m)/m!, n >= m >= 0, otherwise 0.
Let IP be the lower triangular matrix with its first subdiagonal equal to the first subdiagonal (cf. A014105) of this entry's unsigned matrix M and with all other elements equal to zero. Then IP is the infinitesimal generator of M, i.e., M = exp(IP). - Tom Copeland, Dec 12 2015
From Tom Copeland, Dec 14 2015: (Start)
Production matrix is
3, -1;
-6, 7, -1;
0, -20, 11, -1;
0, 0, -42, 15, -1;
0, 0, 0, -72, 19, -1;
0, 0, 0, 0, -110, 23, -1;
0, 0, 0, 0, 0, -156, 27, -1;
0, 0, 0, 0, 0, 0, -210, 31, -1;
0, 0, 0, 0, 0, 0, 0, -272, 35, -1;
... (End)

Extensions

Title formula corrected by Tom Copeland, Dec 12 2015