A130762 A fold back triangular sequence for A003991: symmetrical folding and addition of.
1, 4, 6, 4, 8, 12, 10, 16, 9, 12, 20, 24, 14, 24, 30, 16, 16, 28, 36, 40, 18, 32, 42, 48, 25, 20, 36, 48, 56, 60, 22, 40, 54, 64, 70, 36, 24, 44, 60, 72, 80, 84, 26, 48, 66, 80, 90, 96, 49, 28, 52, 72, 88, 100, 108, 112, 30, 56, 78, 96, 110, 120, 126, 64, 32, 60, 84, 104, 120
Offset: 1
Examples
{1}, {4}, {6, 4}, {8, 12}, {10, 16, 9}, {12, 20, 24}, {14, 24, 30, 16}, {16, 28, 36, 40}, {18, 32, 42, 48, 25}, {20, 36, 48, 56, 60}, {22, 40, 54, 64, 70, 36}, {24, 44, 60, 72, 80, 84}
Programs
-
Mathematica
(* first A003991*) a = Table[Table[(n - i)*(1 + i), {i, 0, n - 1}], {n, 1, 20}]; (* then fold back from that*) Table[Table[If[ Mod[n, 2] == 1, a[[n]][[m]] + a[[n]][[Length[a[[n]]] - m]] - n, If[m - Floor[ n/2] == 0, (a[[n]][[m]] + a[[ n]][[Length[a[[n]]] - m]] - n)/ 2, a[[n]][[m]] + a[[n]][[Length[a[[n]]] - m]] - n]], {m, 1, Floor[n/ 2]}], {n, 1, Length[a]}]; Flatten[%]
Formula
a0(n,m) = (n-m)*(1+m) Doubling of all elements a(n,m)=2*a0(n,m)-> m->Floor[n/2] except for the uneven middle element on odd sequences in n.
Comments