cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130781 Sequence is identical to its third differences: a(n+3) = 3*a(n+2) - 3*a(n+1) + 2*a(n), with a(0)=a(1)=1, a(2)=2.

Original entry on oeis.org

1, 1, 2, 5, 11, 22, 43, 85, 170, 341, 683, 1366, 2731, 5461, 10922, 21845, 43691, 87382, 174763, 349525, 699050, 1398101, 2796203, 5592406, 11184811, 22369621, 44739242, 89478485, 178956971, 357913942, 715827883, 1431655765, 2863311530
Offset: 0

Views

Author

Paul Curtz, Jul 14 2007, Jul 18 2007

Keywords

Comments

The inverse binomial transform is 1,0,1,... repeated with period 3, essentially A011655. - R. J. Mathar, Aug 28 2023

Crossrefs

Essentially a duplicate of A024493.

Programs

  • Mathematica
    a[n_] := a[n] = 3 a[n - 1] - 3 a[n - 2] + 2 a[n - 3]; a[0] = a[1] = 1; a[2] = 2; Table[a@n, {n, 0, 33}] (* Or *)
    CoefficientList[ Series[(1 - 2 x + 2 x^2)/(1 - 3 x + 3 x^2 - 2 x^3), {x, 0, 33}], x] (* Robert G. Wilson v, Sep 08 2007 *)
    LinearRecurrence[{3,-3,2},{1,1,2},40] (* Harvey P. Dale, Sep 17 2013 *)

Formula

3*a(n) = 2^(n+1) + A087204(n+1).
Also first differences of A024494.
G.f.: (1-2x+2x^2)/(1-3x+3x^2-2x^3).
Binomial transform of [1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, ...]; i.e., ones in positions 2, 5, 8, 11, ... and the rest zeros. [Corrected by Gary W. Adamson, Jan 07 2008]

Extensions

Edited by N. J. A. Sloane, Jul 28 2007