cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130786 Decimal expansion of the complete elliptic integral of the first kind at sqrt(2)-1.

Original entry on oeis.org

1, 6, 4, 5, 5, 6, 8, 3, 9, 5, 2, 9, 3, 4, 5, 8, 0, 3, 9, 8, 6, 6, 0, 5, 1, 6, 8, 5, 2, 8, 7, 0, 7, 2, 7, 1, 5, 9, 9, 9, 5, 5, 7, 0, 2, 6, 0, 5, 5, 4, 0, 1, 0, 3, 7, 2, 6, 5, 2, 9, 2, 1, 3, 7, 1, 4, 9, 5, 7, 8, 8, 6, 3, 7, 2, 9, 3, 3, 0, 8, 7, 1, 5, 9, 3, 1, 8, 4, 1, 2, 9, 8, 3, 2, 0, 4, 8, 0, 6, 6, 5, 8, 5, 9, 9, 7
Offset: 1

Views

Author

R. J. Mathar, Jul 15 2007

Keywords

Examples

			Equals 1.64556839529345803986605168528707271599955702605540103726529213714...
which equals K[sqrt(2)-1] = Pi^(3/2)*sqrt[2+sqrt(2)]/(4*Gamma(5/8)*Gamma(7/8))
= 5.5683279... * 1.8477590650.. / ( 4 * 1.43451884..... * 1.0896523574...).
		

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)^(3/2)*Sqrt(2 + Sqrt(2))/(4*Gamma(5/8)*Gamma(7/8)); // G. C. Greubel, Sep 27 2018
  • Maple
    evalf(EllipticK(sqrt(2)-1));
  • Mathematica
    RealDigits[Pi^(3/2)*Sqrt[2 + Sqrt@2]/(4 Gamma[5/8] Gamma[7/8]), 10, 111][[1]] (* Robert G. Wilson v, Jul 19 2007 *)
    K[x_] := EllipticK[x^2/(x^2-1)]/Sqrt[1-x^2]; RealDigits[K[Sqrt[2]-1], 10, 111][[1]] (* Jean-François Alcover, Sep 22 2015 *)
  • PARI
    default(realprecision, 100); Pi^(3/2)*sqrt(2 + sqrt(2))/(4* gamma(5/8)*gamma(7/8)) \\ G. C. Greubel, Sep 27 2018
    
  • PARI
    ellK(sqrt(2)-1) \\ Charles R Greathouse IV, Feb 04 2025
    

Extensions

More terms from Robert G. Wilson v, Jul 19 2007