A130799 Triangle read by rows in which row n (n>=3) list the anti-divisors of n.
2, 3, 2, 3, 4, 2, 3, 5, 3, 5, 2, 6, 3, 4, 7, 2, 3, 7, 5, 8, 2, 3, 5, 9, 3, 4, 9, 2, 6, 10, 3, 11, 2, 3, 5, 7, 11, 4, 5, 7, 12, 2, 3, 13, 3, 8, 13, 2, 6, 14, 3, 4, 5, 9, 15, 2, 3, 5, 9, 15, 7, 16, 2, 3, 7, 10, 17, 3, 4, 17, 2, 5, 6, 11, 18, 3, 5, 8, 11, 19, 2, 3, 19, 4, 12, 20, 2, 3, 7
Offset: 3
Examples
Anti-divisors of 3 through 20: 3: 2 4: 3 5: 2, 3 6: 4 7: 2, 3, 5 8: 3, 5 9: 2, 6 10: 3, 4, 7 11: 2, 3, 7 12: 5, 8 13: 2, 3, 5, 9 14: 3, 4, 9 15: 2, 6, 10 16: 3, 11 17: 2, 3, 5, 7, 11 18: 4, 5, 7, 12 19: 2, 3, 13 20: 3, 8, 13
Links
- T. D. Noe, Rows n=3..1000 of triangle, flattened
- Diana Mecum, Rows 3 through 500
Programs
-
Mathematica
f[n_] := Complement[ Sort@ Join[ Select[ Union@ Flatten@ Divisors[{2 n - 1, 2 n + 1}], OddQ@ # && # < n &], Select[ Divisors[2 n], EvenQ@ # && # < n &]], Divisors@ n]; Flatten@ Table[ f@n, {n, 3, 32}] (* Robert G. Wilson v, Jul 17 2007 *) Table[Select[Range[2, n - 1], Abs[Mod[n, #] - #/2] < 1 &], {n, 3, 31}] // Flatten (* Michael De Vlieger, Jun 14 2016, after Harvey P. Dale at A066272 *)
Comments