A130813 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 7-subsets of X containing none of X_i, (i=1,...n).
128, 1024, 4608, 15360, 42240, 101376, 219648, 439296, 823680, 1464320, 2489344, 4073472, 6449664, 9922560, 14883840, 21829632, 31380096, 44301312, 61529600, 84198400, 113667840, 151557120, 199779840, 260582400, 336585600, 430829568
Offset: 7
Keywords
Links
- Milan Janjic, Two Enumerative Functions
- Eric Weisstein's World of Mathematics, Cross Polytope
Crossrefs
Programs
-
Magma
[Binomial(n,n-7)*2^7: n in [7..40]]; // Vincenzo Librandi, Jul 09 2015
-
Maple
a:=n->binomial(2*n,7)+binomial(n,2)*binomial(2*n-4,3)-n*binomial(2*n-2,5)-(2*n-6)*binomial(n,3); seq(binomial(n,n-7)*2^7,n=7..32); # Zerinvary Lajos, Dec 07 2007 seq(binomial(n+6, 7)*2^7, n=1..22); # Zerinvary Lajos, Aug 05 2008
-
Mathematica
Table[Binomial[n, n - 7] 2^7, {n, 7, 40}] (* Vincenzo Librandi, Jul 09 2015 *)
Formula
a(n) = binomial(2*n,7) + binomial(n,2)*binomial(2*n-4,3) - n*binomial(2*n-2,5) - (2*n-6)*binomial(n,3).
a(n) = C(n,n-7)*2^7, n>=7. - Zerinvary Lajos, Dec 07 2007
G.f.: 128*x^7/(1-x)^8. - Colin Barker, Mar 18 2012
a(n) = 128*A000580(n). a(n+1) = 2*(n+1)*a(n)/(n-6) for n >= 7. - Robert Israel, Jul 08 2015
Comments