A130834 Decimal expansion of the limit of the (2/n^2)-th power of the number of distinct dimer coverings on the n X n square grid, n even, as n goes to infinity.
1, 7, 9, 1, 6, 2, 2, 8, 1, 2, 0, 6, 9, 5, 9, 3, 4, 2, 4, 7, 3, 0, 5, 4, 7, 0, 8, 9, 3, 4, 2, 9, 8, 2, 4, 3, 2, 2, 6, 8, 1, 3, 4, 3, 9, 3, 1, 3, 2, 9, 5, 4, 7, 6, 7, 7, 6, 7, 5, 8, 3, 4, 7, 6, 4, 9, 9, 4, 2, 5, 0, 7, 4, 2, 3, 7, 6, 5, 7, 8, 9, 6, 0, 1, 3, 2, 2, 6
Offset: 1
Examples
1.791622812069593424730547089...
References
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 232, 407.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
- Steven R. Finch, Several Constants Arising in Statistical Mechanics, Ann. Comb. 3(2-4) (1999), 323-335.
- Antonio Gracia Llorente, Infinite Product Formula Involving the Catalan's Constant, OSF Preprint, 2024.
Programs
-
Magma
R:=RealField(100); Exp(2*Catalan(R)/Pi(R)); // G. C. Greubel, Aug 23 2018
-
Maple
evalf(exp(2*Catalan/Pi));
-
Mathematica
RealDigits[Exp[(2*Catalan)/Pi],10,120][[1]] (* Harvey P. Dale, Jul 17 2011 *)
-
PARI
exp(2*Catalan/Pi) \\ Charles R Greathouse IV, Jul 15 2014
Formula
Equals A097469^2. - Vaclav Kotesovec, Dec 30 2020
Equals Product_{k>=1} (((4*k-1)^3*(4*k+3))/((4*k+1)^3*(4*k-3)))^k. - Antonio GraciĆ” Llorente, Jul 22 2024
Equals lim_{n->oo} 1/((4*n)^(2*n))*Product_{k=1..n} ((4*k - 1)^(4*k - 1))/((4*k - 3)^(4*k - 3)). - Antonio GraciĆ” Llorente, Apr 16 2025