cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130843 Numbers k for which a number m < k exists such that digitsum(binomial(k,m)) = k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16, 18, 21, 26, 27, 33, 36, 39, 42, 45, 48, 51, 52, 53, 54, 60, 63, 66, 67, 71, 72, 74, 75, 78, 79, 80, 81, 90, 99, 105, 108, 114, 117, 123, 124, 126, 127, 129, 134, 135, 141, 144, 150, 152, 153, 158, 159, 162, 171, 177, 180, 186
Offset: 1

Views

Author

Keywords

Examples

			k=13 --> m=4 because binomial(13,4) = 13!/(4!*9!) = 715 --> 7+1+5 = 13.
k=75 --> m=37 because binomial(75,37) = 75!/(37!*38!)=3446310324346630677300 --> 3+4+4+6+3+1+3+2+4+3+4+6+6+3+6+7+7+3 = 75.
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local i,j,k,w; for i from 1 by 1 to n do for j from 1 to i do w:=0; k:=binomial(i,j); while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; if i=w then print(i); break; fi; od; od; end: P(200);
  • Mathematica
    sdbQ[n_]:=Module[{d=Total[IntegerDigits[#]]&/@Table[Binomial[n,m], {m,n-1}]}, MemberQ[d,n]]; Join[{1},Select[Range[200],sdbQ]] (* Harvey P. Dale, Jan 03 2013 *)