A130859 1729-gonal numbers.
1, 1729, 5184, 10366, 17275, 25911, 36274, 48364, 62181, 77725, 94996, 113994, 134719, 157171, 181350, 207256, 234889, 264249, 295336, 328150, 362691, 398959, 436954, 476676, 518125, 561301, 606204, 652834, 701191, 751275, 803086, 856624, 911889, 968881, 1027600, 1088046, 1150219
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A130876.
Programs
-
Mathematica
PolygonalNumber[1729,Range[40]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 15 2016 *)
-
PARI
a(n) = (1727*n^2 - 1725*n)/2 \\ Michel Marcus, Jul 16 2013
Formula
a(n) = (1727*n^2 - 1725*n)/2.
From Elmo R. Oliveira, Nov 27 2024: (Start)
G.f.: x*(1 + 1726*x)/(1-x)^3.
E.g.f.: exp(x)*x*(2 + 1727*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)