A130875 Absolute difference of final digits of two consecutive cubes.
1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1).
Crossrefs
Cf. A008960.
Programs
-
Mathematica
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 1},{1, 7, 1, 3, 1, 1, 3, 1, 7, 9},105] (* Ray Chandler, Aug 26 2015 *) Abs[Differences[Mod[#,10]]]&/@Partition[Range[0,120]^3,2,1]//Flatten (* or *) PadRight[{},120,{1,7,1,3,1,1,3,1,7,9}] (* Harvey P. Dale, Oct 27 2019 *)
-
PARI
Vec(-x*(9*x^9+7*x^8+x^7+3*x^6+x^5+x^4+3*x^3+x^2+7*x+1)/((x-1)*(x+1)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1)) + O(x^100)) \\ Colin Barker, Dec 04 2014
Formula
a(n) = a(n-10). - Colin Barker, Dec 04 2014
G.f.: -x*(9*x^9+7*x^8+x^7+3*x^6+x^5+x^4+3*x^3+x^2+7*x+1) / ((x-1)*(x+1)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1)). - Colin Barker, Dec 04 2014
Comments