A130898 Number of partitions of n into "number of partitions of n into partition numbers" numbers.
1, 2, 3, 5, 6, 10, 12, 18, 22, 30, 37, 50, 59, 78, 93, 118, 140, 176, 206, 255, 297, 362, 421, 507, 585, 699, 803, 949, 1088, 1276, 1455, 1696, 1927, 2230, 2527, 2909, 3284, 3761, 4233, 4825, 5416, 6146, 6879, 7778, 8682, 9778, 10892, 12226, 13582, 15200
Offset: 1
Keywords
Examples
a(6) = 12 because there are 12 partitions of 6 whose parts are 1,2,3,4,6 which are terms of sequence A007279, which is the number of partitions of n into partition numbers.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
pp:= proc(p) local b; b:= proc(n, i) if n<0 then 0 elif n=0 then 1 elif i<1 then 0 else b(n,i):= b(n,i-1) +b(n-p(i), i) fi end; n-> b(n, n) end: a:= (pp@@3)(n->n): seq(a(n), n=1..100); # Alois P. Heinz, Sep 13 2011
-
Mathematica
pp[p_] := Module[{b}, b[n_, i_] := Which[n<0, 0, n==0, 1, i<1, 0, True, b[n, i] = b[n, i-1] + b[n-p[i], i]]; b[#, #]&]; a = Nest[pp, Identity, 3]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 26 2015, after Alois P. Heinz *)
Comments