A130911 a(n) is the number of primes with odd binary weight among the first n primes minus the number with an even binary weight.
1, 0, -1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 3, 2, 3, 2, 3, 4, 5, 4, 5, 6, 5, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9, 8, 7, 8, 9, 8, 9, 10, 11, 12, 13, 14, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 20, 19, 20, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 17, 16, 15, 14, 15, 14, 15, 14, 13, 14, 13, 14, 15, 16, 17, 18, 19, 20, 19, 20, 19, 20, 19, 18, 19, 20, 21, 20, 19
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- CNRS Press release, The sum of digits of prime numbers is evenly distributed, May 12, 2010.
- Christian Mauduit and Joël Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Annals Math., 171 (2010), 1591-1646.
- ScienceDaily, Sum of Digits of Prime Numbers Is Evenly Distributed: New Mathematical Proof of Hypothesis, May 12, 2010.
- Vladimir Shevelev, A conjecture on primes and a step towards justification, arXiv:0706.0786 [math.NT], 2007.
- Vladimir Shevelev, On excess of odious primes, arXiv:0707.1761 [math.NT], 2007.
Crossrefs
Programs
-
Mathematica
cnt=0; Table[p=Prime[n]; If[EvenQ[Count[IntegerDigits[p,2],1]], cnt--, cnt++ ]; cnt, {n,10000}] Accumulate[If[OddQ[DigitCount[#,2,1]],1,-1]&/@Prime[Range[100]]] (* Harvey P. Dale, Aug 09 2013 *)
-
PARI
f(p)={v=binary(p);s=0;for(k=1,#v,if(v[k]==1,s++)); return(s%2)};nO=0;nE=0;forprime(p=2,520,if(f(p),nO++, nE++);an=nO-nE;print1(an,", ")) \\ Washington Bomfim, Jan 14 2011
-
Python
from sympy import nextprime from itertools import islice def agen(): p, evod = 2, [0, 1] while True: yield evod[1] - evod[0] p = nextprime(p); evod[bin(p).count('1')%2] += 1 print(list(islice(agen(), 97))) # Michael S. Branicky, Dec 21 2021
Formula
Extensions
Edited by N. J. A. Sloane, Nov 16 2011
Comments