cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131019 Semiperimeters of quadrilaterals whose sides are 4 consecutive odd primes.

Original entry on oeis.org

13, 18, 24, 30, 36, 44, 51, 60, 69, 76, 84, 92, 101, 110, 120, 129, 136, 145, 153, 162, 174, 185, 195, 204, 210, 216, 228, 240, 254, 267, 278, 288, 298, 310, 319, 330, 341, 350, 362, 372, 381, 390, 400, 415, 430, 445, 456, 464, 471, 482, 494, 506, 520, 530
Offset: 1

Views

Author

Jonathan Vos Post, Jun 09 2007

Keywords

Comments

(2+3+5+7)/2 = 8.5, not an integer. Hence we restrict to odd primes. The cyclic quadrilaterals whose areas, rounded, are prime are given in A131020. The prime semiperimeters begin: a(1) = 13, a(13) = 101. This arises in the cyclic quadrilateral analog of A106171.

Examples

			a(1) = (3 + 5 + 7 + 11)/2 = 13.
		

References

  • Coxeter, H. S. M. and Greitzer, S. L. "Cyclic Quadrangles; Brahmagupta's Formula", Sect. 3.2 in Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 56-60, 1967.

Crossrefs

Programs

  • Maple
    A131019 := proc(n) local i ; add( ithprime(n+i),i=1..4)/2 ; end: for n from 1 to 180 do printf("%d, ",A131019(n)) : od:
  • Mathematica
    Plus@@@Partition[Prime[Range[2,6! ]],4,1]/2 (* Vladimir Joseph Stephan Orlovsky, Feb 18 2010 *)

Formula

a(n) = (prime(n) + prime(n+1) + prime(n+2) + prime(n+3))/2 for n>1.
a(n) = (prime(n+1) + prime(n+2) + prime(n+3) + prime(n+4))/2 = A034963(n)/2.

Extensions

Edited by R. J. Mathar, Jun 12 2007