A131019 Semiperimeters of quadrilaterals whose sides are 4 consecutive odd primes.
13, 18, 24, 30, 36, 44, 51, 60, 69, 76, 84, 92, 101, 110, 120, 129, 136, 145, 153, 162, 174, 185, 195, 204, 210, 216, 228, 240, 254, 267, 278, 288, 298, 310, 319, 330, 341, 350, 362, 372, 381, 390, 400, 415, 430, 445, 456, 464, 471, 482, 494, 506, 520, 530
Offset: 1
Keywords
Examples
a(1) = (3 + 5 + 7 + 11)/2 = 13.
References
- Coxeter, H. S. M. and Greitzer, S. L. "Cyclic Quadrangles; Brahmagupta's Formula", Sect. 3.2 in Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 56-60, 1967.
Links
- J. L. Coolidge, A Historically Interesting Formula for the Area of a Quadrilateral, Amer. Math. Monthly 46, 345-347, 1939.
- Eric Weisstein's World of Mathematics, Brahmagupta's Formula.
Programs
-
Maple
A131019 := proc(n) local i ; add( ithprime(n+i),i=1..4)/2 ; end: for n from 1 to 180 do printf("%d, ",A131019(n)) : od:
-
Mathematica
Plus@@@Partition[Prime[Range[2,6! ]],4,1]/2 (* Vladimir Joseph Stephan Orlovsky, Feb 18 2010 *)
Formula
a(n) = (prime(n) + prime(n+1) + prime(n+2) + prime(n+3))/2 for n>1.
a(n) = (prime(n+1) + prime(n+2) + prime(n+3) + prime(n+4))/2 = A034963(n)/2.
Extensions
Edited by R. J. Mathar, Jun 12 2007
Comments