A131039 Expansion of (1-x)*(2*x^2-4*x+1)/(1-2*x+5*x^2-4*x^3+x^4).
1, -3, -5, 7, 26, 0, -97, -97, 265, 627, -362, -2702, -1351, 8733, 13775, -18817, -70226, 0, 262087, 262087, -716035, -1694157, 978122, 7300802, 3650401, -23596563, -37220045, 50843527, 189750626, 0, -708158977, -708158977, 1934726305, 4577611587, -2642885282, -19726764302, -9863382151
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..3492
- Index entries for linear recurrences with constant coefficients, signature (2,-5,4,-1).
Programs
-
Maple
f:= gfun:-rectoproc({a(0)=1, a(1)=-3, a(2)=-5, a(3)=7, a(n)=2*a(n-1)-5*a(n-2)+4*a(n-3)-a(n-4)},a(n),remember): map(f, [$0..100]); # Robert Israel, Dec 25 2016
-
Mathematica
CoefficientList[Series[(1-x)(2x^2-4x+1)/(1-2x+5x^2-4x^3+x^4),{x, 0, 50}], x] (* or *) LinearRecurrence[{2,-5,4,-1},{1,-3,-5,7},50] (* Harvey P. Dale, Aug 31 2011 *)
Formula
a(0)=1, a(1)=-3, a(2)=-5, a(3)=7, a(n)=2*a(n-1)-5*a(n-2)+4*a(n-3)-a(n-4) [Harvey P. Dale, Aug 31 2011]
Comments