cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131039 Expansion of (1-x)*(2*x^2-4*x+1)/(1-2*x+5*x^2-4*x^3+x^4).

Original entry on oeis.org

1, -3, -5, 7, 26, 0, -97, -97, 265, 627, -362, -2702, -1351, 8733, 13775, -18817, -70226, 0, 262087, 262087, -716035, -1694157, 978122, 7300802, 3650401, -23596563, -37220045, 50843527, 189750626, 0, -708158977, -708158977, 1934726305, 4577611587, -2642885282, -19726764302, -9863382151
Offset: 0

Views

Author

Creighton Dement, Jun 11 2007

Keywords

Comments

Unsigned bisection gives match to A002316 (Related to Bernoulli numbers). Note that all numbers in A002316 appear to be in A002531 (Numerators of continued fraction convergents to sqrt(3)) as well. a(12*n+5) = (0,0,0,0,...)
Floretion Algebra Multiplication Program, FAMP Code: 2tesseq['i + .5i' + .5j' + .5k' + .5e]

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(0)=1, a(1)=-3, a(2)=-5, a(3)=7, a(n)=2*a(n-1)-5*a(n-2)+4*a(n-3)-a(n-4)},a(n),remember):
    map(f, [$0..100]); # Robert Israel, Dec 25 2016
  • Mathematica
    CoefficientList[Series[(1-x)(2x^2-4x+1)/(1-2x+5x^2-4x^3+x^4),{x, 0, 50}], x] (* or *) LinearRecurrence[{2,-5,4,-1},{1,-3,-5,7},50] (* Harvey P. Dale, Aug 31 2011 *)

Formula

a(0)=1, a(1)=-3, a(2)=-5, a(3)=7, a(n)=2*a(n-1)-5*a(n-2)+4*a(n-3)-a(n-4) [Harvey P. Dale, Aug 31 2011]