A131063 Triangle read by rows: T(n,k) = 5*binomial(n,k) - 4 for 0 <= k <= n.
1, 1, 1, 1, 6, 1, 1, 11, 11, 1, 1, 16, 26, 16, 1, 1, 21, 46, 46, 21, 1, 1, 26, 71, 96, 71, 26, 1, 1, 31, 101, 171, 171, 101, 31, 1, 1, 36, 136, 276, 346, 276, 136, 36, 1, 1, 41, 176, 416, 626, 626, 416, 176, 41, 1, 1, 46, 221, 596, 1046, 1256, 1046, 596, 221, 46, 1
Offset: 0
Examples
First few rows of the triangle: 1; 1, 1; 1, 6, 1; 1, 11, 11, 1; 1, 16, 26, 16, 1; 1, 21, 46, 46, 21, 1; 1, 26, 71, 96, 71, 26, 1; ...
Links
- Muniru A Asiru, Rows n=0..100 of triangle, flattened
Programs
-
GAP
Print(Flat(List([0..10],n->List([0..n],k->5*Binomial(n,k)-4)))); # Muniru A Asiru, Feb 21 2019
-
Magma
[5*Binomial(n, k) -4: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
-
Maple
T := proc (n, k) if k <= n then 5*binomial(n, k)-4 else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # Emeric Deutsch, Jun 20 2007
-
Mathematica
Table[5*Binomial[n,k] -4, {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
-
Sage
[[5*binomial(n, k) -4 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020
Formula
G.f.: (1-z-t*z+5*t*z^2)/((1-z)*(1-t*z)*(1-z-t*z)). - Emeric Deutsch, Jun 20 2007
Extensions
More terms from Emeric Deutsch, Jun 20 2007
Comments