A131067 Triangle read by rows: T(n,k) = 7*binomial(n,k) - 6 for 0 <= k <= n.
1, 1, 1, 1, 8, 1, 1, 15, 15, 1, 1, 22, 36, 22, 1, 1, 29, 64, 64, 29, 1, 1, 36, 99, 134, 99, 36, 1, 1, 43, 141, 239, 239, 141, 43, 1, 1, 50, 190, 386, 484, 386, 190, 50, 1, 1, 57, 246, 582, 876, 876, 582, 246, 57, 1, 1, 64, 309, 834, 1464, 1758, 1464, 834, 309, 64, 1
Offset: 0
Examples
First few rows of the triangle: 1; 1, 1; 1, 8, 1; 1, 15, 15, 1; 1, 22, 36, 22, 1; 1, 29, 64, 64, 29, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Programs
-
Magma
[7*Binomial(n, k) -6: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
-
Maple
T := proc (n, k) if k <= n then 7*binomial(n, k)-6 else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # Emeric Deutsch, Jun 20 2007
-
Mathematica
Table[7*Binomial[n, k] -6, {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
-
Sage
[[7*binomial(n, k) -6 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020
Formula
G.f.: G(t,z) = (1-z-t*z+7*t*z^2)/((1-z)*(1-t*z)*(1-z-t*z)). - Emeric Deutsch, Jun 20 2007
Extensions
More terms from Emeric Deutsch, Jun 20 2007
Comments