A081118 Triangle of first n numbers per row having exactly n 1's in binary representation.
1, 3, 5, 7, 11, 13, 15, 23, 27, 29, 31, 47, 55, 59, 61, 63, 95, 111, 119, 123, 125, 127, 191, 223, 239, 247, 251, 253, 255, 383, 447, 479, 495, 503, 507, 509, 511, 767, 895, 959, 991, 1007, 1015, 1019, 1021, 1023, 1535, 1791, 1919, 1983, 2015, 2031, 2039, 2043
Offset: 1
Examples
Triangle begins: .......... 1 ......... ................ 1 ........ 3...5 ....... .............. 11 101 ...... 7..11..13 ..... .......... 111 1011 1101 ... 15..23..27..29 ... ...... 1111 10111 11011 11101 . 31..47..55..59..61 . . 11111 101111 110111 111011 111101.
Links
- Reinhard Zumkeller, Rows n=1..150 of triangle, flattened
Crossrefs
Programs
-
Haskell
a081118 n k = a081118_tabl !! (n-1) !! (k-1) a081118_row n = a081118_tabl !! (n-1) a081118_tabl = iterate (\row -> (map ((+ 1) . (* 2)) row) ++ [4 * (head row) + 1]) [1] a081118_list = concat a081118_tabl -- Reinhard Zumkeller, Feb 23 2012
-
Mathematica
Table[2^(n+1)-2^(n-k+1)-1,{n,10},{k,n}]//Flatten (* Harvey P. Dale, Apr 09 2020 *)
Formula
T(n, k) = 2^(n+1) - 2^(n-k+1) - 1, 1<=k<=n.
a(n) = (2^A002260(n)-1)*2^A004736(n)-1; a(n)=(2^i-1)*2^j-1, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Apr 04 2013
Comments