A131108 T(n,k) = 2*A007318(n,k) - A097806(n,k).
1, 1, 1, 2, 3, 1, 2, 6, 5, 1, 2, 8, 12, 7, 1, 2, 10, 20, 20, 9, 1, 2, 12, 30, 40, 30, 11, 1, 2, 14, 42, 70, 70, 42, 13, 1, 2, 16, 56, 112, 140, 112, 56, 15, 1, 2, 18, 72, 168, 252, 252, 168, 72, 17, 1, 2, 20, 90, 240, 420, 504, 420, 240, 90, 19, 1
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 1; 2, 3, 1; 2, 6, 5, 1; 2, 8, 12, 7, 1; 2, 10, 20, 20, 9, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
function T(n,k) if k eq n-1 then return 2*n-1; elif k eq n then return 1; else return 2*Binomial(n,k); end if; return T; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 18 2019
-
Maple
seq(seq( `if`(k=n-1, 2*n-1, `if`(k=n, 1, 2*binomial(n,k))), k=0..n), n=0..12); # G. C. Greubel, Nov 18 2019
-
Mathematica
Table[If[k==n-1, 2*n-1, If[k==n, 1, 2*Binomial[n, k]]], {n,0,12}, {k,0, n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
-
PARI
T(n,k) = if(k==n-1, 2*n-1, if(k==n, 1, 2*binomial(n,k))); \\ G. C. Greubel, Nov 18 2019
-
Sage
@CachedFunction def T(n, k): if (k==n-1): return 2*n-1 elif (k==n): return 1 else: return 2*binomial(n,k) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 18 2019
Formula
Twice Pascal's triangle minus A097806, the pairwise operator.
G.f.: (1-x*y+x^2+x^2*y)/((-1+x+x*y)*(x*y-1)). - R. J. Mathar, Aug 11 2015
Extensions
Corrected by Philippe Deléham, Dec 17 2007
More terms added and data corrected by G. C. Greubel, Nov 18 2019
Comments