A131111 T(n, k) = 3*binomial(n,k) - 2*I(n,k), where I is the identity matrix; triangle T read by rows (n >= 0 and 0 <= k <= n).
1, 3, 1, 3, 6, 1, 3, 9, 9, 1, 3, 12, 18, 12, 1, 3, 15, 30, 30, 15, 1, 3, 18, 45, 60, 45, 18, 1, 3, 21, 63, 105, 105, 63, 21, 1, 3, 24, 84, 168, 210, 168, 84, 24, 1, 3, 27, 108, 252, 378, 378, 252, 108, 27, 1
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins: 1; 3, 1; 3, 6, 1; 3, 9, 9, 1; 3, 12, 18, 12, 1; 3, 15, 30, 30, 15, 1; 3, 18, 45, 60, 45, 18, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
T:= function(n,k) if k=n then return 1; else return 3*Binomial(n,k); fi; end; Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
-
Magma
[k eq n select 1 else 3*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
-
Maple
seq(seq(`if`(k=n, 1, 3*binomial(n,k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
-
Mathematica
Table[If[k==n, 1, 3*Binomial[n, k]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
-
PARI
T(n,k) = if(k==n, 1, 3*binomial(n,k)); \\ G. C. Greubel, Nov 18 2019
-
Sage
@CachedFunction def T(n, k): if (k==n): return 1 else: return 3*binomial(n, k) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
Formula
Bivariate o.g.f.: Sum_{n,k>=0} T(n,k)*x^n*y^k = (1 + 2*x - x*y)/((1 - x*y)*(1 - x - x*y)). - Petros Hadjicostas, Feb 20 2021
Comments