A131112 T(n,k) = 4*binomial(n,k) - 3*I(n,k), where I is the identity matrix; triangle T read by rows (n >= 0 and 0 <= k <= n).
1, 4, 1, 4, 8, 1, 4, 12, 12, 1, 4, 16, 24, 16, 1, 4, 20, 40, 40, 20, 1, 4, 24, 60, 80, 60, 24, 1, 4, 28, 84, 140, 140, 84, 28, 1, 4, 32, 112, 224, 280, 224, 112, 32, 1, 4, 36, 144, 336, 504, 504, 336, 144, 36, 1
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins: 1; 4, 1; 4, 8, 1; 4, 12, 12, 1; 4, 16, 24, 16, 1; 4, 20, 40, 40, 20, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
T:= function(n,k) if k=n then return 1; else return 4*Binomial(n,k); fi; end; Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
-
Magma
[k eq n select 1 else 4*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
-
Maple
seq(seq(`if`(k=n, 1, 4*binomial(n,k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
-
Mathematica
Table[If[k==n, 1, 4*Binomial[n, k]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
-
PARI
T(n,k) = if(k==n, 1, 4*binomial(n,k)); \\ G. C. Greubel, Nov 18 2019
-
Sage
def T(n, k): if (k==n): return 1 else: return 4*binomial(n, k) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
Formula
n-th row sum = A036563(n+2) = 2^(n+2) - 3.
Bivariate o.g.f.: Sum_{n,k>=0} T(n,k)*x^n*y^k = (1 + 3*x - x*y)/((1 - x*y)*(1 - x - x*y)). - Petros Hadjicostas, Feb 20 2021