A131113 T(n,k) = 5*binomial(n,k) - 4*I(n,k), where I is the identity matrix; triangle T read by rows (n >= 0 and 0 <= k <= n).
1, 5, 1, 5, 10, 1, 5, 15, 15, 1, 5, 20, 30, 20, 1, 5, 25, 50, 50, 25, 1, 5, 30, 75, 100, 75, 30, 1, 5, 35, 105, 175, 175, 105, 35, 1, 5, 40, 140, 280, 350, 280, 140, 40, 1, 5, 45, 180, 420, 630, 630, 420, 180, 45, 1
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins: 1; 5, 1; 5, 10, 1; 5, 15, 15, 1; 5, 20, 30, 20, 1; 5, 25, 50, 50, 25, 1; 5, 30, 75, 100, 75, 30, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
T:= function(n,k) if k=n then return 1; else return 5*Binomial(n,k); fi; end; Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
-
Magma
[k eq n select 1 else 5*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
-
Maple
seq(seq(`if`(k=n, 1, 5*binomial(n,k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
-
Mathematica
Table[If[k==n, 1, 5*Binomial[n, k]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
-
PARI
T(n,k) = if(k==n, 1, 5*binomial(n,k)); \\ G. C. Greubel, Nov 18 2019
-
Sage
def T(n, k): if k == n: return 1 else: return 5*binomial(n, k) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
Formula
Bivariate o.g.f.: Sum_{n,k>=0} T(n,k)*x^n*y^k = (1 + 4*x - x*y)/((1 - x*y)*(1 - x - x*y)). - Petros Hadjicostas, Feb 20 2021
Comments