cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131115 Triangle read by rows: T(n,k) = 7*binomial(n,k) for 1 <= k <= n with T(n,n) = 1 for n >= 0.

Original entry on oeis.org

1, 7, 1, 7, 14, 1, 7, 21, 21, 1, 7, 28, 42, 28, 1, 7, 35, 70, 70, 35, 1, 7, 42, 105, 140, 105, 42, 1, 7, 49, 147, 245, 245, 147, 49, 1, 7, 56, 196, 392, 490, 392, 196, 56, 1, 7, 63, 252, 588, 882, 882, 588, 252, 63, 1, 7, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 15 2007

Keywords

Comments

Row sums give A048489.
Non-diagonal entries of Pascal's triangle are multiplied by 7. - Emeric Deutsch, Jun 20 2007
The matrix inverse starts
1;
-7, 1;
91, -14, 1;
-1771, 273, -21, 1;
45955, -7084, 546, -28, 1;
-1490587, 229775, -17710, 910, -35, 1;
58018051, -8943522, 689325, -35420, 1365, -42, 1;
-2634606331, 406126357, -31302327, 1608425, -61985, 1911, -49, 1;
... - R. J. Mathar, Mar 15 2013

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  7,  1;
  7, 14,  1;
  7, 21, 21,  1;
  7, 28, 42, 28,  1;
  7, 35, 70, 70, 35, 1;
  ...
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=n then return 1;
        else return 7*Binomial(n,k);
        fi;  end;
    Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
  • Magma
    [k eq n select 1 else 7*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
    
  • Maple
    T := proc (n, k) if k < n then 7*binomial(n, k) elif k = n then 1 else 0 end if end proc; for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jun 20 2007
  • Mathematica
    Table[If[k==n, 1, 7*Binomial[n, k]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
  • PARI
    T(n,k)=if(k==n,1,7*binomial(n,k)) \\ Charles R Greathouse IV, Jan 16 2012
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==n): return 1
        else: return 7*binomial(n, k)
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
    

Formula

G.f.: (1 + 6*x - t*x)/((1-t*x)*(1-x-t*x)). - Emeric Deutsch, Jun 20 2007

Extensions

Corrected and extended by Emeric Deutsch, Jun 20 2007