A131115 Triangle read by rows: T(n,k) = 7*binomial(n,k) for 1 <= k <= n with T(n,n) = 1 for n >= 0.
1, 7, 1, 7, 14, 1, 7, 21, 21, 1, 7, 28, 42, 28, 1, 7, 35, 70, 70, 35, 1, 7, 42, 105, 140, 105, 42, 1, 7, 49, 147, 245, 245, 147, 49, 1, 7, 56, 196, 392, 490, 392, 196, 56, 1, 7, 63, 252, 588, 882, 882, 588, 252, 63, 1, 7, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins: 1; 7, 1; 7, 14, 1; 7, 21, 21, 1; 7, 28, 42, 28, 1; 7, 35, 70, 70, 35, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
T:= function(n,k) if k=n then return 1; else return 7*Binomial(n,k); fi; end; Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
-
Magma
[k eq n select 1 else 7*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
-
Maple
T := proc (n, k) if k < n then 7*binomial(n, k) elif k = n then 1 else 0 end if end proc; for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jun 20 2007
-
Mathematica
Table[If[k==n, 1, 7*Binomial[n, k]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
-
PARI
T(n,k)=if(k==n,1,7*binomial(n,k)) \\ Charles R Greathouse IV, Jan 16 2012
-
Sage
@CachedFunction def T(n, k): if (k==n): return 1 else: return 7*binomial(n, k) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
Formula
G.f.: (1 + 6*x - t*x)/((1-t*x)*(1-x-t*x)). - Emeric Deutsch, Jun 20 2007
Extensions
Corrected and extended by Emeric Deutsch, Jun 20 2007
Comments