A131126 Expansion of (phi(q^2) / phi(-q))^2 in powers of q where phi() is a Ramanujan theta function.
1, 4, 16, 48, 128, 312, 704, 1504, 3072, 6036, 11488, 21264, 38400, 67864, 117632, 200352, 335872, 554952, 904784, 1457136, 2320128, 3655296, 5702208, 8813472, 13504512, 20523996, 30952544, 46340832, 68901888, 101777112, 149403264, 218016640, 316342272
Offset: 0
Keywords
Examples
G.f. = 1 + 4*q + 16*q^2 + 48*q^3 + 128*q^4 + 312*q^5 + 704*q^6 + 1504*q^7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[((1 - x^(4*k))^5 / ((1 - x^k)^2 * (1 - x^(2*k)) * (1 - x^(8*k))^2))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *) a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q^2] / EllipticTheta[ 4, 0, q])^2, {q, 0, n}]; (* Michael Somos, Nov 11 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^2 + A) * eta(x^8 + A)^2 / eta(x^4 + A)^5)^-2, n))};
Formula
Expansion of ((phi(q) / phi(-q))^2 + 1) / 2 in powers of q where phi() is a Ramanujan theta function.
Expansion of (eta(q^4)^5 / (eta(q)^2 * eta(q^2) * eta(q^8)^2))^2 in powers of q.
Euler transform of period 8 sequence [ 4, 6, 4, -4, 4, 6, 4, 0, ...].
a(n) ~ exp(sqrt(2*n)*Pi) / (16 * 2^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015
Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = 1/2 + (1/8)*sqrt(8 + 6*sqrt(2)). - Simon Plouffe, Mar 04 2021
Comments