cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131126 Expansion of (phi(q^2) / phi(-q))^2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 4, 16, 48, 128, 312, 704, 1504, 3072, 6036, 11488, 21264, 38400, 67864, 117632, 200352, 335872, 554952, 904784, 1457136, 2320128, 3655296, 5702208, 8813472, 13504512, 20523996, 30952544, 46340832, 68901888, 101777112, 149403264, 218016640, 316342272
Offset: 0

Views

Author

Michael Somos, Jun 15 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 4*q + 16*q^2 + 48*q^3 + 128*q^4 + 312*q^5 + 704*q^6 + 1504*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1 - x^(4*k))^5 / ((1 - x^k)^2 * (1 - x^(2*k)) * (1 - x^(8*k))^2))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q^2] / EllipticTheta[ 4, 0, q])^2, {q, 0, n}]; (* Michael Somos, Nov 11 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^2 + A) * eta(x^8 + A)^2 / eta(x^4 + A)^5)^-2, n))};

Formula

Expansion of ((phi(q) / phi(-q))^2 + 1) / 2 in powers of q where phi() is a Ramanujan theta function.
Expansion of (eta(q^4)^5 / (eta(q)^2 * eta(q^2) * eta(q^8)^2))^2 in powers of q.
Euler transform of period 8 sequence [ 4, 6, 4, -4, 4, 6, 4, 0, ...].
a(n) = 4 * A107035(n) unless n=0. 2 * a(n) = A014969(n) unless n=0.
a(n) ~ exp(sqrt(2*n)*Pi) / (16 * 2^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015
Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = 1/2 + (1/8)*sqrt(8 + 6*sqrt(2)). - Simon Plouffe, Mar 04 2021