A131176 a(n) = (n^5-n-10)/10.
-1, -1, 2, 23, 101, 311, 776, 1679, 3275, 5903, 9998, 16103, 24881, 37127, 53780, 75935, 104855, 141983, 188954, 247607, 319997, 408407, 515360, 643631, 796259, 976559, 1188134, 1434887, 1721033, 2051111, 2429996, 2862911, 3355439, 3913535, 4543538, 5252183, 6046613, 6934391
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Mathematica
Table[((n^5 - n - 1) - 9)/10, {n, 0, 100}] LinearRecurrence[{6,-15,20,-15,6,-1},{-1,-1,2,23,101,311},40] (* Harvey P. Dale, Dec 17 2024 *)
Formula
a(n) = ((n^5 - n - 1) - 9)/10.
G.f.: (-1+5*x-7*x^2+16*x^3-2*x^4+x^5)/(-1+x)^6. - R. J. Mathar, Nov 14 2007