cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131183 a(n) = a(n-1) + a(n-2) if n == 3 mod 4; a(n) = a(n-1) - a(n-2) if n == 0 mod 4; a(n) = a(n-1)*a(n-2) if n == 1 mod 4; and a(n) = a(n-1)/a(n-2) if n == 2 mod 4; with a(1)=a(2)=1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 4, 2, 8, 4, 12, 8, 96, 12, 108, 96, 10368, 108, 10476, 10368, 108615168, 10476, 108625644, 108615168, 11798392572168192, 108625644, 11798392680793836, 11798392572168192, 139202068568601556987554268864512
Offset: 1

Views

Author

Jose Ramon Real, Oct 22 2007

Keywords

Comments

If S(n)=a(4n-1) (i.e., term "+"), R(n)=a(4n) (i.e., "-"), P(n)=a(4n+1), D(n)=a(4n+2) then D(n)=S(n), P(n)=S(n+1)-S(n), R(n+1)=P(n)=S(n+1)-S(n). - Jose Ramon Real, Nov 10 2007

Examples

			a(3) = a(2) + a(1) = 1 + 1 = 2;
a(4) = a(3) - a(2) = 2 - 1 = 1;
a(5) = a(4) * a(3) = 1 * 2 = 2;
a(6) = a(5) / a(4) = 2 / 1 = 2.
		

Programs

  • Maple
    A131183 := proc(n) option remember ; if n <= 2 then 1 ; elif n mod 4 = 3 then A131183(n-1)+A131183(n-2) ; elif n mod 4 = 0 then A131183(n-1)-A131183(n-2) ; elif n mod 4 = 1 then A131183(n-1)*A131183(n-2) ; else A131183(n-1)/A131183(n-2) ; fi ; end: seq(A131183(n),n=1..35) ; # R. J. Mathar, Oct 28 2007
  • Mathematica
    a[1]=a[2]=1; a[n_] := a[n] = Switch[Mod[n, 4], 3, a[n-1]+a[n-2], 0, a[n-1]-a[n-2], 1, a[n-1]*a[n-2], 2, a[n-3]]; Array[a, 30] (* Jean-François Alcover, Dec 28 2015 *)
    nxt[{n_,a_,b_}]:=Module[{m=Mod[n+1,4]},{n+1,b,Which[m==3,a+b,m==0,b-a, m==1,a*b,m==2,b/a]}]; Join[{1,1,2},NestList[nxt,{1,1,2},30][[All,2]]] (* Harvey P. Dale, Sep 04 2017 *)

Extensions

More terms from R. J. Mathar, Oct 28 2007