A131188 Indices of products of twin primes in the semiprimes.
6, 13, 48, 103, 270, 508, 1001, 1413, 2724, 3052, 4859, 5668, 8029, 9062, 9608, 12558, 13828, 17319, 18823, 22781, 28077, 40162, 42359, 48113, 60703, 71793, 79161, 83792, 90129, 94954, 140436, 144445, 146452, 156704, 165199, 218110, 223095
Offset: 1
Keywords
Examples
Ignoring (2, 3), the first twin prime pair is (3, 5). We have 3 * 5 = 15, which is the sixth semiprime (the previous five semiprimes being 4, 6, 9, 10, 14). Hence 6 is the first term of this sequence. The second twin prime pair is (5, 7). Then 5 * 7 = 35, which is the thirteenth semiprime (following 21, 22, 25, 26, 33, 34). Hence 13 is the second term of this sequence.
Links
- Zak Seidov, Table of n, a(n) for n = 1..300
Crossrefs
Cf. A128301.
Programs
-
Maple
N:= 10^7: # to use semiprimes <= N P:= select(isprime, [2,seq(i,i=3..N/2,2)]): count:= 0: for i from 1 to numtheory:-pi(floor(sqrt(N))) do for j from i to nops(P) while P[i]*P[j] <= N do count:= count+1; S[count]:= [P[i]*P[j],evalb(P[j]-P[i]=2)] od od: S:= sort(convert(S,list),(a,b) -> a[1] S[t][2],[$1..nops(S)]); # Robert Israel, Dec 30 2015
-
Mathematica
s = Select[Range[10^6], PrimeOmega@ # == 2 &]; Map[Position[s, #] &, # (# + 2) &@ Select[Prime@ Range@ 160, NextPrime@ # - # == 2 &]] // Flatten (* Michael De Vlieger, Dec 31 2015 *) Module[{upto=2*10^6,sp,tp},sp=Select[Range[upto],PrimeOmega[#]==2&]; tp= Times@@@Select[Partition[Prime[Range[upto/2]],2,1],#[[2]]-#[[1]] == 2&]; Table[Position[sp,n],{n,tp}]]//Flatten (* Harvey P. Dale, Nov 03 2016 *)
Formula
Extensions
More terms from R. J. Mathar, Oct 26 2007