A131191 Numbers n>=0 such that d(n) = (n^1 + 1) (n^2 + 2) ... (n^22 + 22) / 22!, e(n) = (n^1 + 1) (n^2 + 2) ... (n^23 + 23) / 23!, and f(n) = (n^1 + 1) (n^2 + 2) ... (n^24 + 24) / 24! take nonintegral values.
7, 18, 29, 40, 51, 62, 73, 84, 95, 106, 128, 139, 150, 161, 172, 183, 194, 205, 216, 227, 249, 260, 271, 282, 293, 304, 315, 326, 337, 348, 370, 381, 392, 403, 414, 425, 436, 447, 458, 469, 491, 502, 513, 524, 535, 546, 557, 568, 579, 590, 612, 623, 634, 645, 656, 667, 678, 689, 700, 711, 733, 744
Offset: 1
Keywords
Formula
Notice that 22! = 2^19 * 3^9 * 5^4 * 7^3 * 11^2 * 13 * 17 * 19. All these prime powers divide (n^1 + 1)*(n^2 + 2)*(n^3 +3)*...*(n^22 + 22), except for 11^2. 11^2 does not divide (n^1 + 1)*(n^2 + 2)*(n^3 + 3)*...*(n^22 + 22) for n = 7, 18, 29, 40, 51, 62, 73, 84, 95, 106 modulo 121. That is, d(n) is nonintegral for n the form 11m+7 but not 121m+117, and so are e(n) and f(n). - Max Alekseyev, Nov 10 2007
Extensions
Initial terms were calculated by Peter J. C. Moses; see comment in A129995.
More terms from Max Alekseyev, Feb 02 2015
Comments