cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131218 Array read by antidiagonals: A(n, k) = 1 if and only if the Gray codes for n and k have no bits in common.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 0

Views

Author

Roger L. Bagula, Sep 27 2007

Keywords

Examples

			Array, A(n, k), begins as:
  1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
  1, 0, 0, 1, 1, 0, 0, 1, 1, ...;
  1, 0, 0, 0, 0, 0, 0, 1, 1, ...;
  1, 1, 0, 0, 0, 0, 1, 1, 1, ...;
  1, 1, 0, 0, 0, 0, 0, 0, 0, ...;
  1, 0, 0, 0, 0, 0, 0, 0, 0, ...;
  1, 0, 0, 1, 0, 0, 0, 0, 0, ...;
  1, 1, 1, 1, 0, 0, 0, 0, 0, ...;
  1, 1, 1, 1, 0, 0, 0, 0, 0, ...;
  ...
Antidiagonals begin as:
  1;
  1, 1;
  1, 0, 1;
  1, 0, 0, 1;
  1, 1, 0, 1, 1;
  1, 1, 0, 0, 1, 1;
  1, 0, 0, 0, 0, 0, 1;
  1, 0, 0, 0, 0, 0, 0, 1;
  1, 1, 0, 0, 0, 0, 0, 1, 1;
  1, 1, 1, 1, 0, 0, 1, 1, 1, 1;
  1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1;
  1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1;
  1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1;
  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1;
  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Cf. A140820 (lower triangle), A363710 (antidiagonal sums).

Programs

  • Magma
    A131218:= func< n,k | BitwiseAnd(BitwiseXor(n, ShiftRight(n, 1)), BitwiseXor(k, ShiftRight(k, 1))) eq 0 select 1 else 0 >; // based on Kevin Ryde's code of A140820
    [A131218(n-k,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 04 2025
    
  • Mathematica
    A131218[n_, k_]:= Boole[BitAnd[BitXor[n, BitShiftRight[n,1]], BitXor[k, BitShiftRight[k,1]]]==0]; (* based on Kevin Ryde's code of A140820 *)
    Table[A131218[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 04 2025 *)
  • PARI
    A(n, k) = !bitand(bitxor(n, n>>1), bitxor(k, k>>1)); \\ Joerg Arndt, Sep 05 2025
    
  • SageMath
    def A131218(n,k): return int( (n^^(n>>1)) & (k^^(k>>1)) ==0) # based on Kevin Ryde's code of A140820
    print(flatten([[A131218(n-k, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Sep 05 2025

Formula

A(n,k) = A(k,n) = A140820(n,k) for k <= n.

Extensions

Edited by and new name from G. C. Greubel, Sep 04 2025