A131246 Row sums of triangle A131245.
1, 3, 6, 13, 27, 57, 119, 250, 523, 1097, 2297, 4815, 10086, 21137, 44283, 92793, 194419, 407378, 853559, 1788481, 3747361, 7851867, 16451910, 34471669, 72228171, 151339401, 317100335, 664418698, 1392152131
Offset: 0
Keywords
Examples
a(3) = 13 = sum of row 3 terms of triangle A131245: (5 + 5 + 2 + 1)
Links
- Index entries for linear recurrences with constant coefficients, signature (1,3,-1,-1)
Programs
-
Maple
A046854 := proc(n,k) binomial(floor((n+k)/2),k) ; end proc: A131245 := proc(n,k) local a,j ; a := 0 ; for j from k to n do a := a+ A046854(n,j)*A046854(j,k) ; end do: a ; end proc: A131246 := proc(n) add(A131245(n,k),k=0..n) ; end proc: seq(A131246(n),n=0..50) ; # R. J. Mathar, Jan 29 2011
-
Mathematica
CoefficientList[Series[-(1+x)(x^2-x-1)/(1-x-3x^2+x^3+x^4),{x,0,30}],x] (* or *) LinearRecurrence[{1,3,-1,-1},{1,3,6,13},30] (* Harvey P. Dale, Sep 07 2013 *)
Formula
G.f. -(1+x)*(x^2-x-1)/ ( 1-x-3*x^2+x^3+x^4 ). - R. J. Mathar, Jan 29 2011
a(0)=1, a(1)=3, a(2)=6, a(3)=13, a(n)=a(n-1)+3*a(n-2)-a(n-3)-a(n-4). - Harvey P. Dale, Sep 07 2013
Comments