cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A131244 Row sums of triangle A131243.

Original entry on oeis.org

1, 3, 6, 14, 30, 67, 146, 322, 705, 1549, 3396, 7453, 16346, 35861, 78659, 172549, 378487, 830234, 1821136, 3994730, 8762543, 19220904, 42161568, 92482585, 202863051, 444985664, 976088107, 2141075804, 4696507779
Offset: 0

Views

Author

Gary W. Adamson, Jun 22 2007

Keywords

Comments

A131246 is a companion sequence.

Examples

			a(4) = 30 = sum of row 4 terms of A131243: (8 + 7 + 10 + 4 + 1).
		

Crossrefs

Programs

Formula

G.f. ( 1+x-x^3-2*x^2 ) / ( 1-2*x-2*x^2+3*x^3+x^4 ). - R. J. Mathar, Jan 29 2011

A131243 A065941^2 as an infinite lower triangular matrix.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 4, 4, 1, 8, 7, 10, 4, 1, 13, 12, 23, 12, 6, 1, 21, 20, 48, 29, 21, 6, 1, 34, 33, 96, 64, 62, 24, 8, 1, 55, 54, 185, 132, 160, 74, 36, 8, 1, 89, 88, 348, 261, 382, 200, 130, 40, 10, 1, 144, 143, 642, 500, 859, 492, 400, 150, 55, 10, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 22 2007

Keywords

Comments

Left border, Fibonacci numbers; next border to the right, (Fibonacci numbers - 1).

Examples

			First few rows of the triangle:
   1;
   2,  1;
   3,  2,   1;
   5,  4,   4,   1;
   8,  7,  10,   4,   1;
  13, 12,  23,  12,   6,   1;
  21, 20,  48,  29,  21,   6,   1;
  34, 33,  96,  64,  62,  24,   8,  1;
  55, 54, 185, 132, 160,  74,  36,  8,  1;
  89, 88, 348, 261, 382, 200, 130, 40, 10, 1;
		

Crossrefs

Cf. A065941, A131244 (row sums), A131245, A131246.

Extensions

Data and Example corrected by Jon E. Schoenfield, Feb 26 2022
More terms from Hakan Icoz, Jan 23 2023

A131245 A046854^2 as an infinite lower triangular matrix.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 5, 2, 1, 8, 9, 7, 2, 1, 13, 19, 13, 9, 2, 1, 21, 33, 34, 17, 11, 2, 1, 34, 65, 61, 53, 21, 13, 2, 1, 55, 111, 141, 97, 76, 25, 15, 2, 1, 89, 210, 248, 257, 141, 103, 29, 17, 2, 1, 144, 355, 534, 461, 421, 193, 134, 33, 19, 2, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 22 2007

Keywords

Comments

Left border = Fibonacci numbers.
Row sums = A131246.
A131243 is the square of the reflection triangle to A046854: A065941.
Row sums of A131243 = (1, 3, 6, 14, 30, 67, 146, 322, 705, 1549, ...).

Examples

			First few rows of the triangle:
   1;
   2,  1;
   3,  2,  1;
   5,  5,  2,  1;
   8,  9,  7,  2,  1;
  13, 19, 13,  9,  2,  1;
  21, 33, 34, 17, 11,  2,  1;
  ...
		

Crossrefs

Programs

  • PARI
    T(n, k) = binomial((n+k)\2, k);
    row(n) = my(m=matrix(n+1, n+1, i, j, T(i-1,j-1))); vector(n+1, i, (m^2)[n+1,i]);
    lista(nn) = for (n=0, nn, my(v=row(n)); for (i=1, #v, print1(v[i], ", "));); \\ Michel Marcus, Feb 28 2022

Extensions

More terms from Michel Marcus, Feb 28 2022

A131344 A046854 * A065941.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 4, 3, 1, 8, 7, 8, 3, 1, 13, 12, 18, 9, 4, 1, 21, 20, 38, 21, 14, 4, 1, 34, 33, 76, 47, 39, 15, 5, 1, 55, 54, 147, 97, 100, 43, 21, 5, 1, 89, 88, 277, 194, 236, 115, 69, 22, 6, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 30 2007

Keywords

Comments

Left border = Fibonacci numbers starting with F(2). Row sums = A131246: (1, 3, 6, 13, 27, 57,...). A131345 = A065941 * A046854.

Examples

			First few rows of the triangle are:
1;
2, 1;
3, 2, 1;
5, 4, 3, 1;
8, 7, 8, 3, 1;
13, 12, 18, 9, 4, 1;
...
		

Crossrefs

Formula

A046854 * A065941 as infinite lower triangular matrices.

A183314 Number of n X 2 binary arrays with an element zero only if there are an even number of ones to its left and an even number of ones above it.

Original entry on oeis.org

3, 6, 13, 27, 57, 119, 250, 523, 1097, 2297, 4815, 10086, 21137, 44283, 92793, 194419, 407378, 853559, 1788481, 3747361, 7851867, 16451910, 34471669, 72228171, 151339401, 317100335, 664418698, 1392152131, 2916968489, 6111905849
Offset: 1

Views

Author

R. H. Hardin, Jan 03 2011

Keywords

Comments

Column 2 of A183322.
Is this related to A131246?

Examples

			Some solutions for 5 X 2.
..0..0....1..1....1..1....1..1....0..1....0..0....0..0....0..1....0..0....0..0
..0..0....1..1....1..1....1..1....0..1....0..1....0..1....0..1....0..0....0..1
..1..1....0..1....0..0....0..0....0..0....0..1....0..1....0..1....1..1....0..1
..1..1....0..1....0..1....0..0....1..1....0..1....0..0....0..1....1..1....1..1
..1..1....0..0....0..1....0..0....1..1....1..1....1..1....0..0....0..1....1..1
		

Crossrefs

Formula

Empirical: a(n) = a(n-1) + 3*a(n-2) - a(n-3) - a(n-4).
Empirical g.f.: x*(3 + 3*x - 2*x^2 - x^3) / (1 - x - 3*x^2 + x^3 + x^4). - Colin Barker, Mar 27 2018
Showing 1-5 of 5 results.