cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A131244 Row sums of triangle A131243.

Original entry on oeis.org

1, 3, 6, 14, 30, 67, 146, 322, 705, 1549, 3396, 7453, 16346, 35861, 78659, 172549, 378487, 830234, 1821136, 3994730, 8762543, 19220904, 42161568, 92482585, 202863051, 444985664, 976088107, 2141075804, 4696507779
Offset: 0

Views

Author

Gary W. Adamson, Jun 22 2007

Keywords

Comments

A131246 is a companion sequence.

Examples

			a(4) = 30 = sum of row 4 terms of A131243: (8 + 7 + 10 + 4 + 1).
		

Crossrefs

Programs

Formula

G.f. ( 1+x-x^3-2*x^2 ) / ( 1-2*x-2*x^2+3*x^3+x^4 ). - R. J. Mathar, Jan 29 2011

A131246 Row sums of triangle A131245.

Original entry on oeis.org

1, 3, 6, 13, 27, 57, 119, 250, 523, 1097, 2297, 4815, 10086, 21137, 44283, 92793, 194419, 407378, 853559, 1788481, 3747361, 7851867, 16451910, 34471669, 72228171, 151339401, 317100335, 664418698, 1392152131
Offset: 0

Views

Author

Gary W. Adamson, Jun 22 2007

Keywords

Comments

A131244 is a companion sequence.

Examples

			a(3) = 13 = sum of row 3 terms of triangle A131245: (5 + 5 + 2 + 1)
		

Crossrefs

Programs

  • Maple
    A046854 := proc(n,k) binomial(floor((n+k)/2),k) ; end proc:
    A131245 := proc(n,k) local a,j ; a := 0 ; for j from k to n do a := a+ A046854(n,j)*A046854(j,k) ;  end do: a ; end proc:
    A131246 := proc(n) add(A131245(n,k),k=0..n) ; end proc:
    seq(A131246(n),n=0..50) ; # R. J. Mathar, Jan 29 2011
  • Mathematica
    CoefficientList[Series[-(1+x)(x^2-x-1)/(1-x-3x^2+x^3+x^4),{x,0,30}],x] (* or *) LinearRecurrence[{1,3,-1,-1},{1,3,6,13},30] (* Harvey P. Dale, Sep 07 2013 *)

Formula

G.f. -(1+x)*(x^2-x-1)/ ( 1-x-3*x^2+x^3+x^4 ). - R. J. Mathar, Jan 29 2011
a(0)=1, a(1)=3, a(2)=6, a(3)=13, a(n)=a(n-1)+3*a(n-2)-a(n-3)-a(n-4). - Harvey P. Dale, Sep 07 2013

A131245 A046854^2 as an infinite lower triangular matrix.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 5, 2, 1, 8, 9, 7, 2, 1, 13, 19, 13, 9, 2, 1, 21, 33, 34, 17, 11, 2, 1, 34, 65, 61, 53, 21, 13, 2, 1, 55, 111, 141, 97, 76, 25, 15, 2, 1, 89, 210, 248, 257, 141, 103, 29, 17, 2, 1, 144, 355, 534, 461, 421, 193, 134, 33, 19, 2, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 22 2007

Keywords

Comments

Left border = Fibonacci numbers.
Row sums = A131246.
A131243 is the square of the reflection triangle to A046854: A065941.
Row sums of A131243 = (1, 3, 6, 14, 30, 67, 146, 322, 705, 1549, ...).

Examples

			First few rows of the triangle:
   1;
   2,  1;
   3,  2,  1;
   5,  5,  2,  1;
   8,  9,  7,  2,  1;
  13, 19, 13,  9,  2,  1;
  21, 33, 34, 17, 11,  2,  1;
  ...
		

Crossrefs

Programs

  • PARI
    T(n, k) = binomial((n+k)\2, k);
    row(n) = my(m=matrix(n+1, n+1, i, j, T(i-1,j-1))); vector(n+1, i, (m^2)[n+1,i]);
    lista(nn) = for (n=0, nn, my(v=row(n)); for (i=1, #v, print1(v[i], ", "));); \\ Michel Marcus, Feb 28 2022

Extensions

More terms from Michel Marcus, Feb 28 2022
Showing 1-3 of 3 results.