A131288 a(n) = number of ways to choose a collection C of subsets of U = [1,2,...,n] such that Union_{S in C} = U, Intersection_{S in C} = empty set.
2, 1, 7, 193, 63775, 4294321153, 18446744022173838463, 340282366920938463205120190760593525761, 115792089237316195423570985008687907847825466794905548626109625623336235655679
Offset: 0
Links
- Szymon Łukaszyk, On the quantum separability of qubit registers, 2025.
- David Pasino, Set Covers with Empty Intersection, and a few Related Counts
- Andrew Snowden, On the representation theory of the symmetry group of the Cantor set, arXiv:2308.06648 [math.RT], 2023.
Crossrefs
Programs
-
Mathematica
a[n_] = (-1)^(n+1) + Sum[Binomial[n, k]*Binomial[k, t]*(-1)^(n-t)*2^(2^t), {k, 0, n}, {t, 0, k}]; a[0] = 2; a /@ Range[0, 8] (* Jean-François Alcover, Jul 20 2011, after formula *)
-
PARI
C(n) = sum(k=0, n, binomial(n, k)*(-1)^(n-k)*2^(2^k)); \\ A000371 a(n) = 0^n - 1^n + sum(k=0, n, binomial(n,k)*(-1)^(n-k)*C(k)); \\ Michel Marcus, Oct 27 2020
-
PARI
a(n)={(n==0) + sum(k=0, n, (-1)^k*binomial(n,k)*2^k*(2^(2^(n-k))-1))} \\ Andrew Howroyd, Oct 28 2020
Formula
a(n) = -(-1)^n + Sum_{k=0..n} Sum_{t=0..n} binomial(n, k)*binomial(k, t)*(-1)^(n-t)*2^(2^t) for n > 0.
a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*2^k*(2^(2^(n-k))-1) for n > 0. - Andrew Howroyd, Oct 28 2020
Comments