cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131297 a(n) = ds_11(a(n-1))+ds_11(a(n-2)), a(0)=0, a(1)=1; where ds_11=digital sum base 11.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 11, 4, 5, 9, 14, 13, 7, 10, 17, 17, 14, 11, 5, 6, 11, 7, 8, 15, 13, 8, 11, 9, 10, 19, 19, 18, 17, 15, 12, 7, 9, 16, 15, 11, 6, 7, 13, 10, 13, 13, 6, 9, 15, 14, 9, 13, 12, 5, 7, 12, 9, 11, 10, 11, 11, 2, 3, 5, 8, 13, 11, 4, 5, 9, 14, 13, 7, 10, 17, 17, 14, 11
Offset: 0

Views

Author

Hieronymus Fischer, Jun 27 2007

Keywords

Comments

The digital sum analog (in base 11) of the Fibonacci recurrence.
When starting from index n=3, periodic with Pisano period A001175(10)=60.
a(n) and Fib(n)=A000045(n) are congruent modulo 10 which implies that (a(n) mod 10) is equal to (Fib(n) mod 10)=A003893(n). Thus (a(n) mod 10) is periodic with the Pisano period A001175(10)=60 too.
a(n)==A074867(n) modulo 10 (A074867(n)=digital product analog base 10 of the Fibonacci recurrence).
For general bases p>2, we have the inequality 2<=a(n)<=2p-3 (for n>2). Actually, a(n)<=19=A131319(11) for the base p=11.

Examples

			a(10)=5, since a(8)=11=10(base 11), ds_11(11)=1,
a(9)=4, ds_11(4)=4 and so a(10)=1+4.
		

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,Total[IntegerDigits[a,11]]+Total[IntegerDigits[b,11]]}; NestList[nxt,{0,1},80][[All,1]] (* or *) PadRight[{0,1,1},80,{10,11,11,2,3,5,8,13,11,4,5,9,14,13,7,10,17,17,14,11,5,6,11,7,8,15,13,8,11,9,10,19,19,18,17,15,12,7,9,16,15,11,6,7,13,10,13,13,6,9,15,14,9,13,12,5,7,12,9,11}] (* Harvey P. Dale, Jul 24 2017 *)

Formula

a(n) = a(n-1)+a(n-2)-10*(floor(a(n-1)/11)+floor(a(n-2)/11)).
a(n) = floor(a(n-1)/11)+floor(a(n-2)/11)+(a(n-1)mod 11)+(a(n-2)mod 11).
a(n) = Fib(n)-10*sum{1A000045(n).

Extensions

Incorrect comment removed by Michel Marcus, Apr 29 2018