cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A131299 Triangle T(n,k) = 3*binomial(n-floor((k+1)/2), floor(k/2))-2 with k=0..n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 7, 4, 1, 1, 1, 10, 7, 7, 1, 1, 1, 13, 10, 16, 7, 1, 1, 1, 16, 13, 28, 16, 10, 1, 1, 1, 19, 16, 43, 28, 28, 10, 1, 1, 1, 22, 19, 61, 43, 58, 28, 13, 1, 1, 1, 25, 22, 82, 61, 103, 58, 43, 13, 1, 1, 1, 28, 25, 106, 82, 166
Offset: 0

Views

Author

Gary W. Adamson, Jun 27 2007

Keywords

Comments

Row sums are in A131300. Reversed row triangle = A131301.
From R. J. Mathar, Apr 08 2013: (Start)
The matrix inverse starts
1;
-1, 1;
0, -1, 1;
0, 3, -4, 1;
0, -6, 9, -4, 1;
0, 30, -45, 21, -7, 1;
0, -132, 198, -93, 33, -7, 1;
0, 984, -1476, 693, -246, 54, -10, 1;
0, -6756, 10134, -4758, 1689, -372, 72, -10, 1;
0, 66972, -100458, 47166, -16743, 3687, -714, 102, -13, 1;
(End)

Examples

			Triangle begins:
  1;
  1,  1;
  1,  1,  1;
  1,  1,  4,  1;
  1,  1,  7,  4,  1;
  1,  1, 10,  7,  7,  1;
  1,  1, 13, 10, 16,  7,  1;
  ...
		

Crossrefs

Programs

Formula

3*A065941 - 2*A000012 as infinite lower triangular matrices.

Extensions

Better definition from Bruno Berselli, May 03 2012

A131301 Regular triangle read by rows: T(n,k) = 3*binomial(floor((n+k)/2),k)-2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 7, 1, 1, 1, 7, 7, 10, 1, 1, 1, 7, 16, 10, 13, 1, 1, 1, 10, 16, 28, 13, 16, 1, 1, 1, 10, 28, 28, 43, 16, 19, 1, 1, 1, 13, 28, 58, 43, 61, 19, 22, 1, 1, 1, 13, 43, 58, 103, 61, 82, 22, 25, 1, 1, 1, 16, 43, 103, 103, 166, 82
Offset: 0

Views

Author

Gary W. Adamson, Jun 27 2007

Keywords

Comments

Row sums = A131300: (1, 2, 3, 7, 14, 27, 49, 86, ...). Reversed triangle = A131299.

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  1,  1;
  1,  4,  1,  1;
  1,  4,  7,  1,  1;
  1,  7,  7, 10,  1,  1;
  1,  7, 16, 10, 13,  1,  1;
  ...
		

Crossrefs

Programs

  • Maple
    for n from 0 to 6 do seq(3*binomial(floor((n+k)/2),k)-2,k=0..n); od; # Nathaniel Johnston, Jun 29 2011
  • Mathematica
    t[n_, k_] := 3 Binomial[Floor[(n + k)/2], k] - 2; Table[t[n, k], {n, 11}, {k, 0, n}] // Flatten
    (* to view triangle: Table[t[n, k], {n, 5}, {k, 0, n}] // TableForm *) (* Robert G. Wilson v, Feb 28 2015 *)

Formula

3*A046854 - 2*A000012 as infinite lower triangular matrices (former name).
T(n,k) = 3*binomial(floor((n+k)/2),k)-2. - Nathaniel Johnston, Jun 29 2011

A192953 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.

Original entry on oeis.org

0, 1, 2, 6, 13, 26, 48, 85, 146, 246, 409, 674, 1104, 1801, 2930, 4758, 7717, 12506, 20256, 32797, 53090, 85926, 139057, 225026, 364128, 589201, 953378, 1542630, 2496061, 4038746, 6534864, 10573669, 17108594, 27682326, 44790985, 72473378
Offset: 0

Views

Author

Clark Kimberling, Jul 13 2011

Keywords

Comments

The titular polynomials are defined recursively: p(n,x) = x*p(n-1,x) + 2n - 1, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232 and A192744.

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([0..40], n-> 3*F(n+2)-(2*n+3)); # G. C. Greubel, Jul 12 2019
  • Magma
    F:=Fibonacci; [3*F(n+2)-(2*n+3): n in [0..40]]; // G. C. Greubel, Jul 12 2019
    
  • Mathematica
    (* First program *)
    q = x^2; s = x + 1; z = 40;
    p[0, x]:= 1;
    p[n_, x_]:= x*p[n-1, x] + 2n - 1;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A111314 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192953 *)
    (* Second program *)
    With[{F=Fibonacci}, Table[3*F[n+2]-(2*n+3), {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *)
  • PARI
    vector(40, n, n--; f=fibonacci; 3*f(n+2)-(2*n+3)) \\ G. C. Greubel, Jul 12 2019
    
  • Sage
    f=fibonacci; [3*f(n+2)-(2*n+3) for n in (0..40)] # G. C. Greubel, Jul 12 2019
    

Formula

a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
G.f.: x*(1 -x +2*x^2)/((1-x-x^2)*(1-x)^2). - R. J. Mathar, Aug 01 2011
a(n) = -2*n - 3 + 3*A000045(n+2). - R. J. Mathar, Aug 01 2011
a(n) = A131300(n) - 1. - R. J. Mathar, Mar 24 2018
a(n) = 3*Fibonacci(n+2) - (2*n+3). - G. C. Greubel, Jul 12 2019
Showing 1-3 of 3 results.