A131377 a(n) = (pi(n)+1) mod 2.
1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0
Offset: 0
Examples
n = 0, 1, 2, 3, 4, 5, etc.. a(n)= 1, 1, 0, 1, 1, 0, etc. Starting with 1 the sequence changes when we move from 1 to 2 because 2 is prime, again from 2 to 3 because also 3 is prime, then from 4 to 5 being 5 prime and so on.
Crossrefs
Programs
-
Maple
P:=proc(n) local i,k; k:=1; for i from 0 by 1 to n do if isprime(i) then if k=1 then k:=0; else k:=1; fi; fi; print(k); od; end: P(100);
-
Mathematica
Table[Mod[PrimePi[n] + 1, 2], {n, 0, 100}] (* Wesley Ivan Hurt, Jul 05 2025 *)
Formula
a(n) = 1 - A071986(n).
From Wesley Ivan Hurt, Jul 05 2025: (Start)
a(n) = Sum_{d|n} A345220(d) * mu(n/d). (End)
Extensions
New name from Wesley Ivan Hurt, Jul 05 2025
Comments