A131400 A046854 + A065941 - I (Identity matrix).
1, 2, 1, 2, 2, 1, 2, 3, 3, 1, 2, 3, 6, 3, 1, 2, 4, 7, 7, 4, 1, 2, 4, 11, 8, 11, 4, 1, 2, 5, 12, 15, 15, 12, 5, 1, 2, 5, 17, 16, 30, 16, 17, 5, 1, 2, 6, 18, 27, 36, 36, 27, 18, 6, 1, 2, 6, 24, 28, 63, 42, 63, 28, 24, 6, 1, 2, 7, 25, 44, 71, 84, 84, 71, 44, 25, 7, 1
Offset: 0
Examples
First few rows of the triangle are: 1; 2, 1; 2, 2, 1; 2, 3, 3, 1; 2, 3, 6, 3, 1; 2, 4, 7, 7, 4, 1; 2, 4, 11, 8, 11, 4, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
B:=Binomial;; T:= function(n,k) if k=n then return 1; else return B(Int((n+k)/2), k) + B(n - Int((k+1)/2), Int(k/2)); fi; end; Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jul 13 2019
-
Magma
B:=Binomial; [k eq n select 1 else B(Floor((n+k)/2), k) + B(n - Floor((k+1)/2), Floor(k/2)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 13 2019
-
Mathematica
With[{B = Binomial}, Table[If[k==n, 1, B[Floor[(n+k)/2], k] + B[n - Floor[(k+1)/2], Floor[k/2]]], {n,0,12}, {k,0,n}]]//Flatten (* G. C. Greubel, Jul 13 2019 *)
-
PARI
b=binomial; T(n,k) = if(k==n, 1, b((n+k)\2, k) + b(n - (k+1)\2, k\2)); for(n=0,12, for(k=0,n, print1(T(n,k), ", ", ))) \\ G. C. Greubel, Jul 13 2019
-
Sage
def T(n, k): b=binomial; if (k==n): return 1 else: return b(floor((n+k)/2), k) + b(n - floor((k+1)/2), floor(k/2)) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 13 2019
Extensions
More terms added by G. C. Greubel, Jul 13 2019
Comments