A131407 Repeated set partitions or nested set partitions. Possible coalitions among n persons.
1, 1, 2, 11, 95, 1307, 27035, 788279, 30812087, 1554832679, 98387784047, 7628836816295, 711320467520855, 78520062277781087, 10127079289703949695, 1508987827451079129599, 257250406707409951420079, 49750955749787132205813743, 10833471589449269308161546191
Offset: 0
Keywords
Examples
a(3)=11 because we have {{1,2,3}}, {{1,2},{3}}, {{1,3},{2}}, {{2,3},{1}}, {{{1,2},{3}}}, {{{1,2}},{{3}}}, {{{1,3},{2}}}, {{{1,3}},{{2}}}, {{{2,3},{1}}}, {{{2,3}},{{1}}}, {{1},{2},{3}}.
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 319 and 556.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..261
- Thomas Prellberg, On the Asymptotic Analysis of a Class of Linear Recurrences, Algorithms Seminar 2002-2004, F. Chyzak (ed.), INRIA, (2005), pp. 47-50.
- Thomas Wieder, Visual Basic Program.
Programs
-
Maple
rctlnn := proc(n::nonnegint) # Thanks to Joe Riel, who suggested the use of # "procname" instead of "rctlnn" within the program. local j; option remember; if n = 0 then 1; else bell(n)+add(stirling2(n,j)*procname(j), j=2..n-1); end if; end proc: # second Maple program: a:= proc(n) option remember; uses combinat; bell(n) + add(stirling2(n, i)*a(i), i=2..n-1) end: seq(a(n), n=0..20); # Alois P. Heinz, Apr 05 2012
-
Mathematica
a[n_] := a[n] = If[n<2, 1, BellB[n] + Sum[StirlingS2[n, i]*a[i], {i, 2, n-1}]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
Formula
Recurrence: a(n) = Bell(n) + Sum_{i=2..n-1} S2(n,i)*a(i). E.g.: a(n=4) = Bell(4) + S2(4,2) a(2) + S2(4,3) a(3) = 15+2+7*2+6*11 = 95. "closed" formula: a(n=4) = Bell(n=4) + Sum_{i1=2..(n=4)-1} Bell(i1) + S2(n,i1)*Sum_{i2=2..i1-1} Bell(i2) + S2(i1,i2)*Sum_{i3=2..i2-1} Bell(i3) + S2(i2,i3)*Sum_{i4=2..i3-1} Stirling2(i3,i4).
a(n) ~ 3 * L * (n!)^2 / (n^(1+log(2)/3) * (2*log(2))^n), where L = Lengyel's constant A086053 = 1.0986858055... . - Vaclav Kotesovec, Sep 04 2014
Extensions
a(0)=1 prepended by Alois P. Heinz, Sep 02 2020
Comments