A131408 Repeated integer partitions or nested integer partitions.
1, 1, 2, 5, 14, 35, 95, 248, 668, 1781, 4799, 12890, 34766, 93647, 252635, 681272, 1838135, 4958738, 13379885, 36100214, 97409045, 262833314, 709207394, 1913652308, 5163654671, 13933178390, 37596275726, 101446960109, 273737216768, 738632652929, 1993073801930
Offset: 0
Keywords
Examples
Let denote * an unlabeled element. Then a(n=3)=5 because we have [ *,*,* ], [ *, * ][ * ], [[ *,* ]][[ * ]], [[ *,* ][ * ]], [ * ][ * ][ * ]. From _Gus Wiseman_, Jul 20 2018: (Start) The a(4) = 14 sequences of integer partitions: (4), (31), (22), (211), (4)(1), (31)(2), (22)(2), (211)(3), (211)(21), (31)(2)(1), (22)(2)(1), (211)(3)(1), (211)(21)(2), (211)(21)(2)(1). (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2321
- Thomas Wieder, Visual Basic Program
Programs
-
Maple
A000041 := proc(n) combinat[numbpart](n) ; end: A008284 := proc(n,k) if k = 1 or k = n then 1; elif k > n then 0 ; else procname(n-1,k-1)+procname(n-k,k) ; fi ; end: A131408 := proc(n) option remember; local i ; if n <= 2 then n; else A000041(n)+add(A008284(n,i)*procname(i),i=2..n-1) ; fi ; end: for n from 1 to 40 do printf("%d,",A131408(n)) ; od: # R. J. Mathar, Aug 07 2008 # second Maple program: b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, b(n, i-1) + b(n-i, min(n-i, i))) end: a:= proc(n) option remember; b(n$2)+ add(b(n-i, min(n-i, i))*a(i), i=2..n-1) end: seq(a(n), n=0..30); # Alois P. Heinz, Sep 03 2020
-
Mathematica
t[, 1] = 1; t[n, k_] /; 1 <= k <= n := t[n, k] = Sum[t[n-i, k-1], {i, 1, n-1}] - Sum[t[n-i, k], {i, 1, k-1}]; t[, ] = 0; a[1]=1; a[2]=2; a[n_] := a[n] = PartitionsP[n] + Sum[t[n, i]*a[i], {i, 2, n-1}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 02 2017 *) roo[n_]:=If[n==1,{{{1}}},Join@@Cases[Most[IntegerPartitions[n]],y_:>Prepend[(Prepend[#,y]&/@roo[Length[y]]),{y}]]]; Table[Length[roo[n]],{n,10}] (* Gus Wiseman, Jul 20 2018 *)
Formula
a(n) ~ c * d^n, where d = A246828 = 2.69832910647421123126399866618837633..., c = 0.232635324064951140265176690908381464098550827908380222089145... . - Vaclav Kotesovec, Sep 04 2014
Extensions
Edited and extended by R. J. Mathar, Aug 07 2008
a(0)=1 prepended and edited by Alois P. Heinz, Sep 03 2020
Comments