cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131408 Repeated integer partitions or nested integer partitions.

Original entry on oeis.org

1, 1, 2, 5, 14, 35, 95, 248, 668, 1781, 4799, 12890, 34766, 93647, 252635, 681272, 1838135, 4958738, 13379885, 36100214, 97409045, 262833314, 709207394, 1913652308, 5163654671, 13933178390, 37596275726, 101446960109, 273737216768, 738632652929, 1993073801930
Offset: 0

Views

Author

Thomas Wieder, Jul 09 2007

Keywords

Comments

See A131407 for the labeled case (with much more explanation).
Also the number of sequences of distinct integer partitions (y_1, ..., y_k), containing no partitions of the form (111..1) other than (1), such that sum(y_1) = n and length(y_i) = sum(y_{i+1}) for all i = 1, ..., k-1. - Gus Wiseman, Jul 20 2018

Examples

			Let denote * an unlabeled element. Then a(n=3)=5 because we have [ *,*,* ], [ *, * ][ * ], [[ *,* ]][[ * ]], [[ *,* ][ * ]], [ * ][ * ][ * ].
From _Gus Wiseman_, Jul 20 2018: (Start)
The a(4) = 14 sequences of integer partitions:
  (4), (31), (22), (211),
  (4)(1), (31)(2), (22)(2), (211)(3), (211)(21),
  (31)(2)(1), (22)(2)(1), (211)(3)(1), (211)(21)(2),
  (211)(21)(2)(1).
(End)
		

Crossrefs

Programs

  • Maple
    A000041 := proc(n) combinat[numbpart](n) ; end: A008284 := proc(n,k) if k = 1 or k = n then 1; elif k > n then 0 ; else procname(n-1,k-1)+procname(n-k,k) ; fi ; end: A131408 := proc(n) option remember; local i ; if n <= 2 then n; else A000041(n)+add(A008284(n,i)*procname(i),i=2..n-1) ; fi ; end: for n from 1 to 40 do printf("%d,",A131408(n)) ; od: # R. J. Mathar, Aug 07 2008
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1) + b(n-i, min(n-i, i)))
        end:
    a:= proc(n) option remember; b(n$2)+
          add(b(n-i, min(n-i, i))*a(i), i=2..n-1)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 03 2020
  • Mathematica
    t[, 1] = 1; t[n, k_] /; 1 <= k <= n := t[n, k] = Sum[t[n-i, k-1], {i, 1, n-1}] - Sum[t[n-i, k], {i, 1, k-1}]; t[, ] = 0; a[1]=1; a[2]=2; a[n_] := a[n] = PartitionsP[n] + Sum[t[n, i]*a[i], {i, 2, n-1}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 02 2017 *)
    roo[n_]:=If[n==1,{{{1}}},Join@@Cases[Most[IntegerPartitions[n]],y_:>Prepend[(Prepend[#,y]&/@roo[Length[y]]),{y}]]];
    Table[Length[roo[n]],{n,10}] (* Gus Wiseman, Jul 20 2018 *)

Formula

a(n) = A000041(n) + Sum_{i=2..n-1} A008284(n,i)*a(i).
a(n) ~ c * d^n, where d = A246828 = 2.69832910647421123126399866618837633..., c = 0.232635324064951140265176690908381464098550827908380222089145... . - Vaclav Kotesovec, Sep 04 2014

Extensions

Edited and extended by R. J. Mathar, Aug 07 2008
a(0)=1 prepended and edited by Alois P. Heinz, Sep 03 2020