A131411 Triangle read by rows: T(n,k) = Fibonacci(n) + Fibonacci(k) - 1.
1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 9, 8, 8, 9, 10, 12, 15, 13, 13, 14, 15, 17, 20, 25, 21, 21, 22, 23, 25, 28, 33, 41, 34, 34, 35, 36, 38, 41, 46, 54, 67, 55, 55, 56, 57, 59, 62, 67, 75, 88, 109, 89, 89, 90, 91, 93, 96, 101, 109, 122, 143, 177, 144, 144, 145, 146, 148, 151, 156, 164, 177, 198, 232, 287
Offset: 1
Examples
First few rows of the triangle are: 1; 1, 1; 2, 2, 3; 3, 3, 4, 5; 5, 5, 6, 7, 9; 8, 8, 9, 10, 12, 15; 13, 13, 14, 15, 17, 20, 25; 21, 21, 22, 23, 25, 28, 33, 41; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Programs
-
GAP
F:=Fibonacci;; Flat(List([1..15], n-> List([1..n], k-> F(n) +F(k) -1 ))); # G. C. Greubel, Jul 13 2019
-
Magma
F:=Fibonacci; [F(n)+F(k)-1: k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 13 2019
-
Mathematica
With[{F=Fibonacci}, Table[F[n]+F[k]-1, {n,15}, {k,n}]//Flatten] (* G. C. Greubel, Jul 13 2019 *)
-
PARI
T(n,k) = if(k<=n, fibonacci(n) + fibonacci(k) - 1, 0); \\ Andrew Howroyd, Aug 10 2018
-
Sage
f=fibonacci; [[f(n)+f(k)-1 for k in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 13 2019
Extensions
Name changed and terms a(56) and beyond from Andrew Howroyd, Aug 10 2018
Comments