cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131412 a(n) = n*(Fibonacci(n) - 1) + Fibonacci(n + 2) - 1.

Original entry on oeis.org

1, 2, 7, 15, 32, 62, 117, 214, 385, 683, 1200, 2092, 3625, 6250, 10731, 18359, 31312, 53258, 90365, 152990, 258501, 435987, 734112, 1234200, 2072017, 3474002, 5817487, 9730719, 16258880, 27139478, 45258885, 75408742, 125538505, 208828475, 347119056, 576580804
Offset: 1

Views

Author

Gary W. Adamson, Jul 08 2007

Keywords

Examples

			a(4) = 15 = sum of row 4, triangle A131411; (3 + 3 + 4 + 5).
		

Crossrefs

Row sums of A131411.

Programs

  • GAP
    F:=Fibonacci;; List([1..40], n-> F(n+2)+n*F(n)-(n+1)); # G. C. Greubel, Jul 13 2019
  • Magma
    F:=Fibonacci; [F(n+2)+n*F(n)-(n+1): n in [1..40]]; // G. C. Greubel, Jul 13 2019
    
  • Mathematica
    With[{F=Fibonacci}, Table[F[n+2]+n*F[n]-(n+1), {n,40}]] (* G. C. Greubel, Jul 13 2019 *)
  • PARI
    a(n) = n*(fibonacci(n) - 1) + fibonacci(n+2) - 1; \\ Andrew Howroyd, Aug 10 2018
    
  • PARI
    Vec((1 - 2*x + 3*x^2 - 3*x^3)/((1 - x)^2*(1 - x - x^2)^2) + O(x^40)) \\ Andrew Howroyd, Aug 10 2018
    
  • Sage
    f=fibonacci; [f(n+2)+n*f(n)-(n+1) for n in (1..40)] # G. C. Greubel, Jul 13 2019
    

Formula

From Andrew Howroyd, Aug 10 2018: (Start)
a(n) = n*(Fibonacci(n) - 1) + Sum_{k=1..n} Fibonacci(k).
a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 4*a(n-4) - a(n-6).
G.f.: x*(1 - 2*x + 3*x^2 - 3*x^3)/((1 - x)^2*(1 - x - x^2)^2).
(End)

Extensions

Name changed and terms a(11) and beyond from Andrew Howroyd, Aug 10 2018